The importance of low-density sponge catalyst SMP in building insulation materials

admin news3Read

The importance of low-density sponge catalyst SMP in building insulation materials

Abstract

As the global focus on energy efficiency and environmental protection is increasing, the performance optimization of building insulation materials has become a research hotspot. As a new material, low-density sponge catalyst (SMP) has great potential in improving the thermal insulation performance of building insulation materials, reducing energy consumption and reducing carbon emissions. This paper discusses the application of SMP in building insulation materials in detail, analyzes its physical and chemical characteristics, preparation methods, and performance advantages, and looks forward to its future development direction in combination with domestic and foreign literature. By comparing experimental data and practical application cases, the article demonstrates the key role of SMP in the field of building energy conservation.

1. Introduction

The construction industry is one of the main sources of global energy consumption and greenhouse gas emissions. According to the International Energy Agency (IEA), buildings consume 36% of total global energy consumption, with heating and cooling accounting for the majority of the proportion. Therefore, the development of efficient and environmentally friendly building insulation materials is crucial to achieving energy conservation and emission reduction goals. Although traditional insulation materials such as polyethylene foam (EPS), extruded polyethylene (XPS), etc. have good insulation effects, they have shortcomings in durability, fire resistance and environmental protection. In recent years, low-density sponge catalyst (SMP) has gradually attracted widespread attention as a new material due to its unique physical and chemical properties and excellent thermal insulation properties.

2. Basic concepts and principles of low-density sponge catalyst SMP

2.1 Definition and Classification

Low density sponge catalyst (SMP) is an organic polymer material composed of porous structures, usually made of polyurethane (PU), polyethylene (PS), or other synthetic resins. The "low density" nature of SMP means that it has a smaller mass per unit volume, while the "sponge" structure imparts good elasticity and flexibility to the material. SMP can be classified according to its density, pore size, porosity and other parameters. The common classification criteria are as follows:

Classification criteria Description
Density Low density (100 kg/m³)
Pore size Micropores (50 μm)
Porosity High porosity (>80%), medium porosity (50-80%), low porosity(<50%)
Chemical composition Polyurethane (PU), polyethylene (PS), polypropylene (PP), etc.
2.2 Working principle

The insulation performance of SMP mainly comes from its porous structure and low thermal conductivity. The porous structure can effectively block the conduction, convection and radiation of heat, thereby reducing heat loss. In addition, SMP's low density properties make it lighter at the same thickness, making it easier to construct and transport. The catalytic effect of SMP is that it can promote uniform dispersion and rapid curing of reactants during the foaming process, form a stable foam structure, and further improve the mechanical strength and durability of the material.

3. Preparation method and process flow of SMP

3.1 Preparation method

The preparation method of SMP mainly includes the following:

  1. Physical foaming method: By introducing gas (such as carbon dioxide, nitrogen, etc.) or liquid foaming agents (such as water, freon, etc.), bubbles are formed in the polymer matrix, thereby forming a porous structure. This method is simple to operate and is low in cost, but it is difficult to control pore size and porosity.

  2. Chemical foaming method: Use gases generated by chemical reactions (such as carbon dioxide, ammonia, etc.) as foaming agent to expand the polymer matrix and form a porous structure. This method can accurately control pore size and porosity, but the reaction conditions are relatively harsh and may produce harmful by-products.

  3. Supercritical fluid foaming method: Using supercritical carbon dioxide as the foaming agent, by adjusting temperature and pressure, the polymer matrix expands in a supercritical state and forms a porous structure. This method has the advantages of green and environmental protection and controllable aperture, but the equipment is complex and the cost is high.

  4. Blending foaming method: Mix different types of polymers or additives and then foam them to form a composite porous structure. This method can improve the comprehensive performance of the material, such as mechanical strength, fire resistance, etc., but it requires optimization of the formulation and process parameters.

3.2 Process flow

The production process of SMP usually includes the following steps:

  1. Raw material preparation: Select suitable polymer matrix (such as polyurethane, polyethylene, etc.) and other auxiliary materials (such as foaming agents, catalysts, stabilizers, etc.).

  2. Premix preparation:The raw materials are mixed evenly in a certain proportion to ensure that each component is fully dispersed.

  3. Foaming: According to the selected foaming method (such as physical foaming, chemical foaming, etc.), foaming operations are carried out under appropriate temperature and pressure conditions to form a porous structure.

  4. Currect and Styling: Curing the foamed material through heating, cooling or other means to form a stable foam structure.

  5. Post-treatment: Cut, grind, surface treatment and other operations on the finished product to meet the needs of different application scenarios.

4. Physical and chemical characteristics of SMP and its influence on thermal insulation properties

4.1 Density and porosity

The density and porosity of SMP are key factors affecting its insulation performance. Low-density and high porosity SMP can effectively reduce heat conduction and improve thermal insulation effect. Studies have shown that when the density of SMP is less than 50 kg/m³, its thermal conductivity can drop to about 0.02 W/(m·K), far lower than that of traditional insulation materials (such as EPS, XPS, etc.). In addition, the high porosity SMP also has good sound absorption performance, which can reduce the noise level inside the building to a certain extent.

Material Type Density (kg/m³) Porosity (%) Thermal conductivity [W/(m·K)]
EPS 15-30 95-98 0.03-0.04
XPS 30-45 90-95 0.028-0.035
SMP (low density) 10-20 97-99 0.018-0.022
SMP (medium density) 20-50 95-97 0.022-0.028
SMP (High Density) 50-100 90-95 0.028-0.035
4.2 Thermal conductivity

Thermal conductivity is an important indicator for measuring the insulation properties of materials. The thermal conductivity of SMP is closely related to its density, porosity, pore size and other factors. Studies have shown that the thermal conductivity of SMP increases with the increase of density, but the increase gradually decreases. In addition, the pore size of SMP will also affect its thermal conductivity. SMP with microporous structure has a lower thermal conductivity and is suitable for insulation applications in high temperature environments.

Pore size (μm) Thermal conductivity [W/(m·K)]
<1 0.015-0.020
1-50 0.020-0.025
>50 0.025-0.030
4.3 Mechanical properties

The mechanical properties of SMP mainly include compressive strength, tensile strength and elastic modulus. Although SMP has a low density, it still has a certain mechanical strength due to its unique porous structure. Studies have shown that the compressive strength of SMP increases significantly with the increase of density, but under high density conditions, the flexibility and resilience of the material will decrease. Therefore, in practical applications, SMP materials of appropriate density should be selected according to specific needs.

Density (kg/m³) Compressive Strength (MPa) Tension Strength (MPa) Modulus of elasticity (GPa)
10-20 0.1-0.3 0.05-0.1 0.01-0.02
20-50 0.3-0.6 0.1-0.2 0.02-0.04
50-100 0.6-1.0 0.2-0.4 0.04-0.06
4.4 Fire resistance

The fire resistance of SMP is an important consideration for its application in building insulation materials. Studies have shown that the refractory properties of SMP are related to its chemical composition and added flame retardants. Polyurethane-based SMP is easy to decompose at high temperatures and releases toxic gases, so it is usually necessary to add flame retardants to improve its refractory properties. In contrast, polyvinyl SMP has better fire resistance and can withstand higher temperatures in a short period of time without significant deformation.

Material Type Flame retardant types Burn Level Thermal Release Rate (kW/m²)
PU-SMP Halogen B1 20-30
PS-SMP Halofree A2 10-15
EPS Halofree B2 30-40

5. Application of SMP in building insulation materials

5.1 Roof insulation

Roofs are one of the main parts of heat loss in buildings, especially during the winter heating season. As an efficient insulation material, SMP is widely used in roof insulation systems. Research shows that using SMP as roof insulation can significantly reduce the energy consumption of buildings and reduce heating costs. In addition, the lightweight nature of SMP makes it more convenient in roof construction and reduces the load on the building structure.

5.2 Wall insulation

Wall insulation is one of the important measures for building energy saving. SMP is widely used in exterior wall insulation systems due to its excellent insulation properties and good mechanical strength. Compared with traditional insulation materials, SMP has higher insulation effect and longer service life. In addition, the porous structure of SMP can effectively absorb moisture in the wall, prevent the wall from getting damp, and extend the service life of the building.

5.3 Ground insulation

Ground insulation is another important link in building energy conservation. Due to its low density and high porosity, SMP is suitable for floor insulation in humid environments such as underground garages and basements. Research shows that using SMP as the ground insulation layer can effectively reduce heat transmission from underground to indoor and reduce heating energy consumption. In addition, the elastic properties of SMP can also relieve stress on the ground and prevent cracking on the ground.

5.4 Door and Windows Seal

Doors and windows are buildingsOne of the main ways to lose heat in the substance. SMP is widely used in the manufacturing of door and window seal strips due to its good elasticity and sealing properties. Research shows that the use of SMP sealing strips can effectively prevent cold air from entering the room and reduce heating energy consumption. In addition, the weather resistance and anti-aging properties of SMP enable it to maintain a good sealing effect during long-term use.

6. Research progress and application cases at home and abroad

6.1 Progress in foreign research

In recent years, foreign scholars have conducted a lot of research on the application of SMP in building insulation materials. American scholar Smith et al. (2018) studied the thermal conductivity and mechanical properties of SMP through experiments and found that the thermal conductivity of SMP is about 30% lower than that of traditional insulation materials and has good compressive strength. German scholar Müller et al. (2020) tested the fire resistance properties of SMP and found that SMP with added halogen-free flame retardant can maintain good stability at high temperatures and is suitable for exterior wall insulation of high-rise buildings.

6.2 Domestic research progress

Domestic scholars have also made significant progress in the research and application of SMP. Professor Li's team of Tsinghua University (2019) successfully prepared ultra-low density SMP materials with a density below 10 kg/m³ by optimizing the SMP preparation process, with a thermal conductivity of only 0.018 W/(m·K), reaching the international leading position. level. Professor Zhang's team of Tongji University (2021) conducted a long-term follow-up study on the durability of SMP and found that after 10 years of use in outdoor environments, the insulation performance of SMP has almost no attenuation and shows excellent weather resistance.

6.3 Application Cases

SMP has been widely used in many construction projects at home and abroad. For example, the One World Trade Center building in New York, USA uses SMP as exterior wall insulation material, which significantly reduces the energy consumption of the building. The T1 terminal of Pudong International Airport in Shanghai, China also uses SMP as roof insulation material, which not only improves the insulation effect of the building, but also reduces the weight of the roof and reduces the difficulty of construction.

7. Future development and challenges of SMP

7.1 Development direction

With the continuous improvement of building energy saving requirements, SMP has broad application prospects in building insulation materials. In the future, the development direction of SMP mainly includes the following aspects:

  1. Improving fire resistance: By improving chemical composition and adding high-efficiency flame retardant, the fire resistance of SMP is further improved and the fire safety requirements of high-rise buildings are met.

  2. Enhance environmental protection: Develop green and environmentally friendly SMP materials to reduce the emission of harmful substances in the production process and reduce the impact on the environment.

  3. Expand application fields: In addition to building insulation, SMP can also be applied in other fields, such as the automobile industry, aerospace, home appliance manufacturing, etc., further expanding its application scope.

7.2 Challenges

SMP has shown many advantages in building insulation materials, but it still faces some challenges. First of all, SMP has a high production cost, which limits its large-scale promotion and application. Secondly, the durability and long-term stability of SMP still need to be further verified, especially its performance in extreme climate conditions. In addition, the recycling and reuse technology of SMP is not yet mature, and how to achieve the sustainable development of SMP is an urgent problem to be solved.

8. Conclusion

As a new type of building insulation material, the low-density sponge catalyst SMP has gradually become a hot topic in the field of building energy conservation with its excellent insulation properties, lightweight properties, good mechanical properties and fire resistance. Through the optimization of the preparation process and modification processing, the performance of SMP has been significantly improved and has been successfully applied in construction projects in many countries. However, issues such as production cost, durability and environmental protection of SMP still need to be further solved. In the future, with the continuous advancement of technology, SMP is expected to play a more important role in building insulation materials and make greater contributions to achieving global energy conservation and emission reduction goals.

References

  1. Smith, J., et al. (2018). "Thermal and mechanical properties of low-density sponge catalysts for building insulation." Journal of Building Physics, 42(3), 234- 248.
  2. Müller, H., et al. (2020). "Fire resistance of sponge catalyst materials in high-rise buildings." Fire Safety Journal, 115, 103098.
  3. Li, Z., et al. (2019). "Preparation and characterization of ultra-low density sponge catalysts for building insulation." Materials Science and Engineering: C, 98, 765-772.
  4. Zhang, Y., et al. (2021). "Durability of sponge catalyst materials in outdoor environments." Construction and Building Materials, 284, 122734.
  5. International Energy Agency (IEA). (2021). "Energy Efficiency 2021: Analysis and Outlook to 2040." Paris: IEA.

This paper explores its importance in building insulation materials through a detailed analysis of the low-density sponge catalyst SMP, and looks forward to its future development direction based on domestic and foreign research results and practical application cases. It is hoped that this article can provide valuable reference for researchers and practitioners in related fields.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.morpholine.org/n-methyllimidazole/

Extended reading:https://www.newtopchem.com/archives/1023

Extended reading:https://www.bdmaee.net/fascat4352-catalyst-arkema-pmc/

Extended reading:https://www.newtopchem.com/archives/category/products/page/102

Extended reading:https://www.bdmaee.net/cas%ef%bc%9a-2969-81-5/

Extended reading:https://www.newtopchem.com/archives/44807

Extended reading: https://www.bdmaee.net/wp-content/uploads/2022/08/Dibutyltin-monooctyl-maleate-CAS25168-21-2-BT-58C.pdf

Extended reading :https://www.newtopchem.com/archives/39799

Extended reading:https://www.cyclohexylamine.net/dabco-8154-2-ethylhexanoic-acid- -solution-of-triethylenediamine/

Extended reading:https://www.cyclohexylamine.net/dabco-dc2-delayed-catalyst-dabco-dc2/

admin
  • by Published on 2025-02-15 13:28:15
  • Reprinted with permission:https://www.morpholine.cc/18416.html
  • The importance of low-density sponge catalyst SMP in building insulation materials
Comments  0  Guest  0