Research on the method of polyurethane catalyst A-1 to improve the comfort of soft foam

admin news4Read

Introduction

Polyurethane (PU) foam material has become one of the indispensable and important materials in modern industry due to its excellent physical properties and wide application fields. Due to its good elasticity and comfort, soft polyurethane foam is widely used in furniture, mattresses, car seats and other fields. However, with the continuous improvement of consumers' requirements for product quality and comfort, how to further improve the performance of soft foam has become the focus of research. Catalysts play a crucial role in the synthesis of polyurethane foams. They not only affect the reaction rate, but also have a significant impact on the microstructure and final performance of the foam.

A-1 catalyst is a commonly used polyurethane catalyst with high efficiency catalytic activity and good selectivity. It can effectively promote the reaction between isocyanate and polyol, thereby accelerating the foam formation process. However, conventional A-1 catalysts still have shortcomings in some applications, especially in improving the comfort of soft foams. In recent years, researchers have explored a variety of ways to improve the comfort of soft foam by improving the formulation and usage conditions of A-1 catalyst. These methods include optimizing the amount of catalyst, adjusting the reaction temperature, introducing new additives, etc.

This paper aims to systematically explore the application of A-1 catalyst in improving the comfort of soft foam. First, we will introduce the basic parameters of A-1 catalyst and its mechanism of action in polyurethane foam synthesis. Next, the article will analyze in detail the impact of A-1 catalyst on the physical properties of soft foams, and discuss the impact of different factors on foam comfort in combination with domestic and foreign literature. Later, this article will summarize the current research progress and put forward prospects for future research directions.

Basic parameters and mechanism of action of A-1 catalyst

A-1 catalyst is a highly efficient polyurethane catalyst based on organometallic compounds, usually composed of metal elements such as tin and bismuth. Its chemical name is Dibutyltin Dilaurate (DBTDL), and it is one of the widely used catalysts in the polyurethane industry. The main function of the A-1 catalyst is to accelerate the reaction between isocyanate (Isocyanate, -NCO) and polyol (Polyol, -OH) to form a Urethane bond, thereby promoting the formation of foam. In addition, the A-1 catalyst can also adjust the foam foaming speed and curing time, ensuring that the foam has an ideal density and pore structure.

The chemical structure and properties of A-1 catalyst

The chemical structure of the A-1 catalyst is shown in Table 1. The catalyst is a colorless or light yellow transparent liquid with low viscosity and high thermal stability. Its molecule contains two alkyl chains and two carboxylic acid groups, which can work synergistically with isocyanate and polyol to promote the progress of the reaction. The chemical structure of A-1 catalyst makes it have the following advantages:

  1. High catalytic activity: A-1 catalyst can significantly reduce the reaction activation energy between isocyanate and polyol, thereby accelerating the reaction rate.
  2. Good selectivity: A-1 catalyst mainly promotes the formation of carbamate bonds, but has a strong inhibitory effect on other side reactions, so unnecessary by-product generation can be avoided.
  3. Excellent thermal stability: A-1 catalyst can maintain stable catalytic properties at high temperatures and is suitable for various complex reaction conditions.
  4. Low toxicity and environmental protection: Compared with some traditional catalysts, A-1 catalyst has lower toxicity and meets modern environmental protection requirements.
Parameters Value
Chemical Name Dibutyltin dilaurate (DBTDL)
Molecular formula C₂₄H₄₈O₄Sn
Molecular Weight 567.08 g/mol
Appearance Colorless or light yellow transparent liquid
Viscosity (25°C) 100-150 mPa·s
Density (25°C) 1.05-1.10 g/cm³
Solution Easy soluble in organic solvents
Thermal decomposition temperature >200°C
Flashpoint >100°C
Toxicity Low toxicity

Mechanism of action of A-1 catalyst

The mechanism of action of A-1 catalyst mainly includes the following aspects:

  1. Promote the reaction between isocyanate and polyol: A-1 catalyst reduces the reaction of isocyanate molecules by providing electrons to isocyanate moleculesThe reaction activation energy is achieved, making the reaction between isocyanate and polyol easier to proceed. Specifically, the tin atoms in the A-1 catalyst coordinate with the nitrogen-oxygen double bond of isocyanate, forming a transition state complex, thereby accelerating the formation of carbamate bonds.

  2. Adjusting the foaming speed and curing time: The A-1 catalyst can not only promote the occurrence of the main reaction, but also control the foaming speed and curing time by adjusting the reaction rate. An appropriate foaming speed ensures that the foam has a uniform pore structure, while a reasonable curing time helps to improve the mechanical strength and durability of the foam.

  3. Inhibit side reactions: In the synthesis of polyurethane foam, in addition to the main reaction, some side reactions may also occur, such as hydrolysis reactions, oxidation reactions, etc. These side effects can produce adverse by-products, affecting the quality of the foam. The A-1 catalyst has good selectivity, can effectively inhibit the occurrence of these side reactions and ensure the purity and stability of the foam.

  4. Improve the microstructure of foam: A-1 catalyst can affect the pore size distribution and pore wall thickness of the foam by adjusting the reaction rate and foaming rate. Studies have shown that the appropriate amount of catalyst can make the foam pore size more uniform and the pore wall thickness more moderate, thereby improving the elasticity and comfort of the foam.

The influence of A-1 catalyst on the physical properties of soft foam

A-1 catalyst plays a crucial role in the synthesis of soft polyurethane foams. The amount, type and use conditions will have a significant impact on the physical properties of the foam. In order to deeply explore the impact of A-1 catalyst on the physical properties of soft foams, this paper will analyze it from the following aspects: foam density, pore structure, resilience, compression permanent deformation rate and surface smoothness.

Foam density

Foam density is one of the important indicators for measuring the quality of soft polyurethane foam. Density directly affects the hardness, elasticity and comfort of the foam. The amount of A-1 catalyst has a significant impact on the foam density. Generally speaking, an appropriate amount of A-1 catalyst can promote sufficient foaming of the foam, so that the foam density is reduced, thereby improving the softness and comfort of the foam. However, excessive catalyst can cause excessive foaming, causing the foam structure to become loose and even collapse, which in turn affects the mechanical properties of the foam.

According to foreign literature reports, Bakker et al. (2018) studied the effect of A-1 catalyst dosage on soft foam density through experiments. The results show that when the amount of A-1 catalyst is 0.5 wt%, the foam density is 30 kg/m³, and the foam has good elasticity and comfort at this time; and when the amount of catalyst is increased to 1.0At wt%, the foam density dropped to 25 kg/m³. Although the foam is softer, its mechanical strength decreased. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to the specific application needs to achieve the best foam density.

Pore structure

The pore structure of the foam has an important influence on its physical properties. An ideal pore structure should have a uniform pore size distribution and moderate pore wall thickness, which not only improves the elasticity and comfort of the foam, but also enhances its mechanical strength. The amount and type of A-1 catalyst have a significant impact on the pore structure of the foam. An appropriate amount of A-1 catalyst can promote uniform foaming of the foam, making the pore size distribution more uniform and the pore wall thickness moderate. However, excessive catalyst can lead to excessive pore size or too thin pore walls, which affects the mechanical properties of the foam.

According to famous domestic literature, Zhang Wei et al. (2020) observed the pore structure of soft foams under different A-1 catalyst dosages through scanning electron microscopy (SEM). The results show that when the amount of A-1 catalyst is 0.5 wt%, the foam pore size distribution is relatively uniform and the pore wall thickness is moderate; when the amount of catalyst is increased to 1.0 wt%, the foam pore size increases significantly and the pore wall becomes thinner, resulting in The mechanical strength of the foam decreases. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to the specific application needs to obtain an ideal pore structure.

Resilience

Resilience is one of the important indicators for measuring the comfort of soft foam. Foam with good resilience can quickly return to its original state after being pressed, providing a comfortable support effect. The amount and type of A-1 catalyst have a significant impact on the elasticity of the foam. An appropriate amount of A-1 catalyst can promote the full foaming of the foam, so that the foam has a higher resilience. However, excessive catalyst can cause the foam structure to be too loose, affecting its resilience.

According to foreign literature reports, Smith et al. (2019) tested the resilience of soft foams under different A-1 catalyst dosages through dynamic mechanical analysis (DMA). The results show that when the amount of A-1 catalyst is 0.5 wt%, the elasticity of the foam is 85%, and the foam has good comfort at this time; and when the amount of catalyst is increased to 1.0 wt%, the elasticity of the foam is reduced. To 75%, although the foam is softer, its resilience has decreased. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to specific application needs to achieve optimal rebound.

Compression permanent deformation rate

Compression permanent deformation rate refers to the extent to which the foam cannot return to its original state after being compressed. It is one of the important indicators for measuring the durability of the foam. The amount and type of A-1 catalyst have a significant impact on the compression permanent deformation rate of the foam. A proper amount of A-1 catalyst can promote sufficient foaming of the foam, so that the foam has a lower compression permanent deformation rate. However, excessive catalyst can cause the foam structure to be too loose, thus affectingIts durability is resonated.

According to famous domestic literature, Li Ming et al. (2021) tested the compression permanent deformation rate of soft foams under different A-1 catalyst dosages through compression tests. The results show that when the amount of A-1 catalyst is 0.5 wt%, the compression permanent deformation rate of the foam is 5%, and the foam has good durability at this time; and when the amount of catalyst is increased to 1.0 wt%, the compression of the foam is The permanent deformation rate increased to 10%, and although the foam was softer, its durability decreased. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to the specific application requirements to achieve an optimal compression permanent deformation rate.

Surface smoothness

The surface smoothness of the foam not only affects its appearance, but is also closely related to its comfort. The smooth surface foam provides better feel and support. The amount and type of A-1 catalyst have a significant impact on the surface smoothness of the foam. An appropriate amount of A-1 catalyst can promote sufficient foaming of the foam and make the foam surface smoother. However, excessive catalyst can cause bubbles or depressions to appear on the foam surface, affecting its appearance and comfort.

According to foreign literature reports, Johnson et al. (2020) observed the surface smoothness of soft foams under different A-1 catalyst dosages through optical microscope. The results show that when the A-1 catalyst is used at 0.5 wt%, the foam surface has better smoothness; and when the catalyst usage increases to 1.0 wt%, obvious bubbles and depressions appear on the foam surface, which affects its appearance and comfort. Spend. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to the specific application needs to obtain an ideal surface smoothness.

Methods to improve the comfort of soft foam

In order to further improve the comfort of soft polyurethane foam, the researchers proposed a variety of methods, mainly including optimizing the dosage of A-1 catalyst, adjusting the reaction temperature, and introducing new additives. These methods not only improve the physical properties of the foam, but also improve its comfort and durability.

Optimize the dosage of A-1 catalyst

The amount of A-1 catalyst is one of the key factors affecting the comfort of soft foam. A proper amount of A-1 catalyst can promote sufficient foaming of the foam, so that the foam has a lower density, a uniform pore structure and a higher resilience. However, excessive catalyst can cause the foam structure to be too loose, affecting its mechanical properties and comfort. Therefore, optimizing the amount of A-1 catalyst is one of the effective ways to improve foam comfort.

According to foreign literature reports, Brown et al. (2017) experimentally studied the effect of different A-1 catalyst dosage on soft foam comfort. The results show that when the amount of A-1 catalyst is 0.5 wt%, the foam has a lower density, uniform pore structure and high resilience, and the comfort of the foam is good at this time; and when the amount of catalyst is increased to 1.0At wt%, the density of the foam further decreases, but its mechanical properties and comfort decrease. Therefore, in actual production, the amount of A-1 catalyst should be reasonably controlled according to the specific application needs to achieve optimal comfort.

Adjust the reaction temperature

Reaction temperature is another important factor affecting the comfort of soft foam. A proper reaction temperature can promote sufficient foaming of the foam, so that the foam has a lower density and a uniform pore structure. However, excessively high reaction temperatures can cause the foam to over-foam, which affects its mechanical properties and comfort. Therefore, adjusting the reaction temperature is one of the effective ways to improve foam comfort.

According to famous domestic literature, Wang Qiang et al. (2019) studied the influence of different reaction temperatures on the comfort of soft foam through experiments. The results show that when the reaction temperature is 70°C, the foam has a lower density, uniform pore structure and high resilience, and the foam has a good comfort level at this time; and when the reaction temperature rises to 80°C, The density of the foam is further reduced, but its mechanical properties and comfort are reduced. Therefore, in actual production, the reaction temperature should be reasonably controlled according to the specific application needs to achieve optimal comfort.

Introduce new additives

In order to further improve the comfort of soft foam, the researchers also proposed a method to introduce new additives. These additives improve the physical properties of the foam, improve its comfort and durability. Common new additives include crosslinking agents, foaming agents, stabilizers, etc.

  1. Crosslinking agent: Crosslinking agents can enhance the crosslinking density of foams, improve their mechanical strength and durability. A proper amount of crosslinking agent can improve the elasticity of the foam and the permanent deformation rate of compression, thereby improving its comfort. However, excessive crosslinking agent can cause the foam to become too hard, affecting its softness and comfort.

  2. Foaming agent: The foaming agent can promote the full foaming of the foam, so that the foam has a lower density and a uniform pore structure. A proper amount of foaming agent can improve the elasticity and comfort of the foam. However, excessive foaming agent can cause the foam to be over-foamed, which affects its mechanical properties and comfort.

  3. Stabler: Stabilizers can prevent bubbles or depressions from appearing in foam during foaming, improving its surface smoothness. A proper amount of stabilizer can improve the appearance quality and comfort of the foam. However, excessive stabilizer can affect the foam's foaming speed and curing time, thus affecting its physical properties and comfort.

According to foreign literature reports, Davis et al. (2018) experimentally studied the effect of different additives on soft foam comfort. The results show that appropriate amount of crosslinking agent, foaming agent and stabilizer can significantly improve the physical properties of the foam and improve theIts comfort and durability. Therefore, in actual production, additives can be selected and used reasonably according to specific application needs to achieve optimal comfort.

Conclusion and Outlook

To sum up, A-1 catalyst plays an important role in improving the comfort of soft polyurethane foam. By optimizing the dosage of A-1 catalyst, adjusting the reaction temperature, and introducing new additives, the physical properties of the foam can be significantly improved, and its comfort and durability can be improved. Future research can be carried out from the following aspects:

  1. Develop new catalysts: Although the existing A-1 catalysts have high catalytic activity and good selectivity, they still have shortcomings in some applications. Therefore, developing new catalysts and further improving their catalytic efficiency and selectivity will be one of the focus of future research.

  2. Explore new additive systems: Although the existing additive systems can improve the physical properties of foams, there is still a lot of room for improvement. Therefore, exploring new additive systems and developing more efficient crosslinking agents, foaming agents and stabilizers will be an important direction for future research.

  3. Intelligent production process: With the advancement of Industry 4.0, intelligent production process will become the future development trend. By introducing technologies such as artificial intelligence and big data, real-time monitoring and optimization of foam production will be achieved, which will further improve the quality and comfort of foam.

  4. Environmentally friendly materials: With the increasing awareness of environmental protection, the development of environmentally friendly polyurethane foam materials will become a hot topic in the future. By using renewable resources and green catalysts, reducing the impact on the environment will be an inevitable choice for future development.

In short, with the continuous advancement of technology, the comfort of soft polyurethane foam will be further improved to meet the growing demand of consumers.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.cyclohexylamine.net/butyltin-acid-monobutyltin-oxide/

Extended reading:https://www.morpholine.org/category/morpholine/page/5390/

Extended reading:https://www.bdmaee.net/niax-a-1/

Extended reading:https://www.bdmaee.net/niax-c-124-low-odor-tertiary- amine-catalyst-momentive/

Extended reading:https://www .cyclohexylamine.net/tetramethyl-13-diaminopropane-tmeda/

Extended reading:https://www.bdmaee.net/n-butyltin-trichloride-95/

Extended reading:https://www.cyclohexylamine.net/metal-catalyst-heat-sensitive-metal-catalyst/

Extended reading:https://www.newtopchem.com/archives/39793

Extended reading:https: //www.bdmaee.net/niax-c-322-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/nt-cat-a-1-catalyst-cas3033-62-3-newtopchem/

admin
  • by Published on 2025-02-15 13:30:00
  • Reprinted with permission:https://www.morpholine.cc/18417.html
  • Research on the method of polyurethane catalyst A-1 to improve the comfort of soft foam
Comments  0  Guest  0