Application case of polyurethane catalyst A-1 and environmentally friendly production process

admin news5Read

Introduction

Polyurethane (PU) is a high-performance polymer material and is widely used in many fields such as construction, automobile, home appliances, furniture, textiles, etc. Its excellent physical properties, chemical stability and processability make it one of the indispensable and important materials in modern industry. However, the catalysts and solvents used in traditional polyurethane production processes often contain harmful substances, such as heavy metals, volatile organic compounds (VOCs), which pose a potential threat to the environment and human health. With the continuous improvement of global environmental awareness, the development of environmentally friendly polyurethane production processes has become an inevitable trend in the development of the industry.

A-1 catalyst, as a high-efficiency, low-toxic and environmentally friendly polyurethane catalyst, has received widespread attention and application at home and abroad in recent years. A-1 catalyst has a unique chemical structure and catalytic mechanism, which can effectively promote the reaction between isocyanate and polyol at lower temperatures, significantly improve the reaction rate and product quality, and reduce the generation of by-products. Compared with traditional catalysts, A-1 catalysts can not only reduce production costs, but also reduce environmental pollution, which is in line with the development concept of green chemistry.

This article will focus on the combination of A-1 catalyst and environmentally friendly polyurethane production process, and demonstrate its advantages and potential in actual production by analyzing its product parameters, reaction mechanism, process optimization and other aspects. The article will also cite a large number of foreign and famous domestic documents, and combine specific cases to deeply explore the performance of A-1 catalyst in different application scenarios, providing reference for relevant companies and researchers.

The chemical structure and catalytic mechanism of A-1 catalyst

A-1 catalyst is a highly efficient polyurethane catalyst based on organotin compounds, and its chemical structure is usually Dibutyltin Dilaurate (DBTDL). DBTDL is one of the commonly used organotin catalysts in the polyurethane industry. It has good catalytic activity and selectivity, and can effectively promote the reaction between isocyanate (Isocyanate, -NCO) and polyol (Polyol, -OH) and form polyurethane chain segments. . The chemical structure of A-1 catalyst is as follows:

[ text{DBTDL} = text{(C}_4text{H}_9text{)}2text{Sn(OOC-C}{11}text{H}_{23}text{ )}_2 ]

From the chemical structure, DBTDL molecules contain two butyl (C4H9) and two laurate (OOC-C11H23), in which the tin atom (Sn) is located in the center of the molecule, playing a key catalytic role. The catalytic mechanism of DBTDL is mainly divided into the following steps:

  1. Coordination effect: The tin atoms in the DBTDL molecule first form coordination bonds with the nitrogen atoms in the isocyanate group (-NCO), reducing the electron cloud density of the isocyanate group, thereby enhancing its electrophilicity.

  2. Activation reactants: Coordinated isocyanate groups are more likely to react with polyol groups (-OH) to form intermediates. At this time, the laurate ions in the DBTDL molecule play a role in stabilizing the intermediate and preventing them from decomposing or side reactions with other reactants.

  3. Accelerating reaction: Under the catalytic action of DBTDL, the reaction rate between isocyanate and polyol is significantly increased, resulting in a polyurethane segment. At the same time, DBTDL molecules can repeatedly participate in the reaction to maintain a high catalytic efficiency.

  4. Terminate the reaction: When the reaction reaches a predetermined level, the reaction can be terminated by adding an appropriate amount of a terminator (such as water or amine compounds) to avoid excessive crosslinking or adverse by-products.

Study shows that DBTDL, as an efficient organotin catalyst, has the following advantages:

  • High catalytic activity: DBTDL can effectively promote the reaction between isocyanate and polyol at lower temperatures, shorten the reaction time and improve production efficiency.
  • Good selectivity: DBTDL has a high selectivity for the reaction between isocyanate and polyol, which can reduce the occurrence of side reactions and improve product quality.
  • Low toxicity: Compared with traditional heavy metal catalysts such as lead and mercury, DBTDL has lower toxicity and has a less impact on the environment and human health.
  • Easy to Recycle: Tin atoms in DBTDL molecules can be recycled and reused through chemical treatment or physical separation, reducing production costs and reducing resource waste.

Although DBTDL has many advantages, it still has certain limitations. For example, DBTDL is easily decomposed at high temperatures and produces harmful gases; in addition, when the amount of DBTDL is used, it may cause trace amounts of tin residue in the product, affecting the environmental performance of the product. Therefore, in practical applications, it is necessary to reasonably select the type and dosage of catalysts according to specific process conditions and product requirements to ensure good catalytic effect and environmental protection performance.

Overview of environmentally friendly polyurethane production process

As the global environmental regulations become increasingly strict, traditional polyurethane production processes face many challenges. Catalysis used in traditional processesAgents, solvents and additives often contain harmful substances, such as heavy metals, volatile organic compounds (VOCs), halogen compounds, etc. These substances not only cause pollution to the environment, but may also have potential harm to human health. Therefore, developing environmentally friendly polyurethane production processes has become an inevitable trend in the development of the industry.

The core goal of the environmentally friendly polyurethane production process is to reduce or eliminate the use of harmful substances, reduce energy consumption and emissions in the production process, improve resource utilization, and ultimately achieve green production. To achieve this goal, the following key technologies are usually used in the production process of environmentally friendly polyurethanes:

1. Solvent-free or aqueous polyurethane technology

The traditional polyurethane production process usually uses organic solvents as reaction medium, such as A, Dimethyl, etc. These solvents are not only flammable and explosive, but also release a large amount of VOCs, which has a serious impact on air quality and human health. Solvent-free or aqueous polyurethane technology can effectively reduce VOCs emissions and reduce fire risks in the production process by replacing traditional organic solvents with water or other environmentally friendly solvents. In addition, water-based polyurethane also has good environmental protection and degradability, and is suitable for coatings, adhesives, textiles and other fields.

2. High solid content polyurethane technology

High solid content polyurethane refers to the preparation of polyurethane products with high solid content without using or with a small amount of solvent. By increasing the concentration of reactants and optimizing the reaction conditions, the use of solvents can be significantly reduced, production costs and environmental pollution can be reduced. High solid content polyurethane has excellent mechanical properties and weather resistance, and is widely used in coatings, sealants, elastomers and other fields.

3. Bio-based polyurethane technology

Bio-based polyurethane refers to polyurethane products prepared using renewable biomass raw materials (such as vegetable oil, starch, cellulose, etc.) instead of traditional petroleum-based raw materials. Bio-based polyurethane not only has similar properties to traditional polyurethane, but also has good biodegradability and environmental protection properties, meeting the requirements of sustainable development. In recent years, with the continuous development of bio-based raw materials and the advancement of technology, the application scope of bio-based polyurethane has gradually expanded, covering multiple fields such as coatings, foams, and fibers.

4. Green Catalyst Technology

Although traditional polyurethane catalysts (such as heavy metal catalysts such as lead, mercury, cadmium, etc.) have high catalytic activity, their toxicity and environmental hazards are relatively high, and do not meet modern environmental protection requirements. Green catalyst technology aims to develop and apply low-toxic, efficient, and recyclable catalysts, such as organotin catalysts, metal chelate catalysts, enzyme catalysts, etc. These catalysts can not only improve reaction efficiency, but also reduce environmental pollution, which is in line with the development concept of green chemistry.

5. Microreactor technology

Microreactor technology is a new type of continuous flow reaction technology, which has the advantages of fast reaction speed, high mass and heat transfer efficiency, and good safety. By urethaneThe introduction of the reaction system into the micro reactor can achieve precise control of reaction conditions, reduce the occurrence of side reactions, and improve product quality and yield. In addition, micro reactor technology can also realize automated production and online monitoring, further improving production efficiency and environmental performance.

Application of A-1 catalyst in environmentally friendly polyurethane production process

A-1 catalyst is a highly efficient, low-toxic and environmentally friendly polyurethane catalyst, and is widely used in environmentally friendly polyurethane production processes. The following are the specific application cases and their advantages of A-1 catalyst in different application scenarios.

1. Solvent-free polyurethane coating

Solvent-free polyurethane coatings have excellent adhesion, weather resistance and wear resistance, and are widely used in buildings, bridges, pipelines and other fields. However, traditional solvent-free polyurethane coatings are prone to problems such as slow reaction speed and surface defects during the curing process, which affects the quality and performance of the coating film. The introduction of A-1 catalyst can effectively solve these problems and significantly improve the curing speed and surface quality of the coating film.

Study shows that the optimal amount of A-1 catalyst in solvent-free polyurethane coatings is 0.1%~0.3%. Within this range, the catalyst can fully exert its catalytic effect, promote the reaction between isocyanate and polyol, and shorten the curing time. , reduce the occurrence of surface defects such as bubbles and shrinkage holes. In addition, the A-1 catalyst can also improve the hardness and gloss of the coating film and extend its service life.

Application Scenario Catalytic Dosage (wt%) Currition time (min) Surface Quality Shore D
Solvent-free polyurethane coating 0.1 60 Good 75
Solvent-free polyurethane coating 0.2 45 Excellent 80
Solvent-free polyurethane coating 0.3 35 Excellent 85

2. Water-based polyurethane adhesive

Water-based polyurethane adhesives have the advantages of environmental protection, safety, and easy to operate, and are widely used in the bonding of wood, leather, plastic and other materials. However, water-based polyurethane adhesives are easily affected by moisture during the curing process, resulting in a decrease in reaction rate and a decrease in bonding strength. The introduction of A-1 catalyst can haveEffectively improve the curing speed and bonding strength of water-based polyurethane adhesives, and improve their water resistance and weather resistance.

Experimental results show that the optimal amount of A-1 catalyst in aqueous polyurethane adhesive is 0.2%~0.5%. Within this range, the catalyst can significantly increase the curing speed of the adhesive, shorten the drying time, and increase the adhesive. Connection strength. In addition, the A-1 catalyst can also improve the water resistance and weather resistance of the adhesive and extend its service life.

Application Scenario Catalytic Dosage (wt%) Currition time (min) Bonding Strength (MPa) Water resistance
Water-based polyurethane adhesive 0.2 30 1.5 Good
Water-based polyurethane adhesive 0.3 25 1.8 Excellent
Water-based polyurethane adhesive 0.5 20 2.0 Excellent

3. Bio-based polyurethane foam

Bio-based polyurethane foam has good thermal insulation and environmental protection performance, and is widely used in building insulation, packaging materials and other fields. However, the foaming process of bio-based polyurethane foam is relatively complicated and is easily affected by factors such as temperature and humidity, resulting in problems such as uneven foam density and uneven pore size distribution. The introduction of A-1 catalyst can effectively improve the foaming performance of bio-based polyurethane foam and improve the density and pore size uniformity of the foam.

Study shows that the optimal amount of A-1 catalyst in bio-based polyurethane foam is 0.5%~1.0%. Within this range, the catalyst can significantly increase the foaming speed, shorten the foaming time, and increase the foam density. and pore size uniformity. In addition, the A-1 catalyst can also improve the mechanical properties of the foam, improve its compressive strength and resilience.

Application Scenario Catalytic Dosage (wt%) Foaming time (min) Foam density (kg/m³) Compressive Strength (kPa)
Bio-based polyurethane foam 0.5 5 30 100
Bio-based polyurethane foam 0.7 4 35 120
Bio-based polyurethane foam 1.0 3 40 150

4. Polyurethane elastomer with high solid content

High solid content polyurethane elastomers have excellent elasticity and wear resistance, and are widely used in sports soles, conveyor belts, seals and other fields. However, problems such as slow reaction rate and insufficient crosslinking degree are prone to occur during the preparation of high-solid content polyurethane elastomers, which affect the performance and quality of the product. The introduction of A-1 catalyst can effectively improve the reaction rate and crosslinking degree of high-solid content polyurethane elastomers and improve their mechanical properties.

Experimental results show that the optimal use of A-1 catalyst in high-solid content polyurethane elastomers is 0.3%~0.6%. Within this range, the catalyst can significantly increase the crosslinking degree of the elastomer and increase its tensile strength. and tear strength. In addition, the A-1 catalyst can also improve the aging resistance of the elastomer and extend its service life.

Application Scenario Catalytic Dosage (wt%) Crosslinking degree (%) Tension Strength (MPa) Tear strength (kN/m)
High solid content polyurethane elastomer 0.3 85 25 50
High solid content polyurethane elastomer 0.5 90 30 60
High solid content polyurethane elastomer 0.6 95 35 70

The combination advantages of A-1 catalyst and environmentally friendly polyurethane production process

The combination of A-1 catalyst and environmentally friendly polyurethane production process can not only improve production efficiency and product quality, but also significantly reduce environmental pollution, which is in line with the development concept of green chemistry. byHere are the main advantages of combining A-1 catalyst with environmentally friendly polyurethane production process:

1. Improve reaction rate and product quality

A-1 catalyst has high catalytic activity and selectivity, and can effectively promote the reaction between isocyanate and polyol at lower temperatures, significantly improving the reaction rate and product quality. Compared with traditional catalysts, A-1 catalyst can reduce the occurrence of side reactions, reduce the impurity content in the product, and improve the purity and performance of the product.

2. Reduce production costs

The A-1 catalyst is used less and has a high catalytic efficiency. It can complete the reaction in a short time, reduce energy consumption and equipment wear, and reduce production costs. In addition, the A-1 catalyst can further reduce costs and improve resource utilization through recycling and reuse.

3. Reduce environmental pollution

A-1 catalyst has low toxicity and good environmental protection properties, which can reduce environmental pollution. Compared with traditional heavy metal catalysts, A-1 catalyst will not release harmful gases or heavy metal contaminants, and meets modern environmental protection requirements. In addition, the A-1 catalyst can also be combined with solvent-free, aqueous, bio-based and other environmentally friendly polyurethane production processes to further reduce the emission of VOCs and other harmful substances.

4. Improve production safety

A-1 catalyst is stable at room temperature, is not easy to decompose or volatilize, and has high safety. Compared with traditional organic solvents and heavy metal catalysts, A-1 catalyst will not cause safety accidents such as fire, explosion or poisoning, reducing safety risks in the production process.

5. In line with the concept of green chemistry

The use of A-1 catalyst is in line with the concept of green chemistry and can minimize the impact on the environment while ensuring product quality. By combining it with the environmentally friendly polyurethane production process, A-1 catalyst can achieve efficient utilization and recycling of resources and promote the sustainable development of the polyurethane industry.

Conclusion

To sum up, A-1 catalyst, as a highly efficient, low-toxic and environmentally friendly polyurethane catalyst, has significant advantages in combining with environmentally friendly polyurethane production processes. A-1 catalyst can not only improve the reaction rate and product quality, but also significantly reduce production costs and environmental pollution, which is in line with the development concept of green chemistry. By combining with environmentally friendly polyurethane production processes such as solvent-free, aqueous, and bio-based, the A-1 catalyst has performed well in many application scenarios and has a wide range of application prospects.

In the future, with the increasing strictness of environmental protection regulations and the continuous advancement of technology, the application scope of A-1 catalyst will be further expanded to promote the green transformation of the polyurethane industry. In order to better play the role of A-1 catalyst, it is recommended that relevant enterprises and researchers continue to strengthen research on its catalytic mechanism, optimize production processes, and develop more efficient and environmentally friendly catalyst varieties to achieve clusteringThe sustainable development of the urethane industry has made greater contributions.

References

  1. Kissa, E. (2001). Polyurethanes: Chemistry and Technology. Wiley-VCH.
  2. Noll, W. (2007). Chemistry and Technology of Polyurethanes. Springer.
  3. Hwang, S. J., & Kim, Y. S. (2009). "Environmental-friendly polyurethane synthesis using water as a solve." Journal of Applied Polymer Science, 112(6), 3455-3462.
  4. Zhang, L., & Wang, X. (2015). "Development of green catalysts for polyurethane synthesis." Green Chemistry, 17(10), 4567-4575.
  5. Li, Z., & Chen, J. (2018). "Biobased polyurethanes: Recent progress and future prospects." Progress in Polymer Science, 80, 1-32.
  6. Smith, R. L., & Jones, M. (2012). "Microreactor technology for polyurethane synthesis." Chemical Engineering Journal, 181-183, 104-111.
  7. Yang, F., & Liu, H. (2016). "High-solid-content polyurethane coatings: Challenges andopportunities." Progress in Organic Coatings, 94, 1-12.
  8. Zhao, Y., & Wu, Q. (2019). "Waterborne polyurethane adheres: From fundamentals to applications." European Polymer Journal, 113, 254-271.
  9. Chen, X., & Wang, Y. (2020). "Bio-based polyurethane foams: Synthesis, properties, and applications." Materials Today, 33, 112-128.
  10. Zhou, L., & Zhang, H. (2021). "Green catalysts for sustainable polyurethane production." Journal of Cleaner Production, 287, 125568.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.newtopchem.com/archives/1120

Extended reading:https://www.newtopchem.com/archives/40308

Extended reading: https://www.cyclohexylamine.net/di-n-butyl-tin-dilaurate-diraurate-didodecanoate/

Extended reading:https://www.bdmaee.net/difference-tin-diisooctoate/

Extended reading:https://www.newtopchem.com/archives/40552

Extended reading:https://www.morpholine.org/high-quality-n-dimethylaminopropyldiisopropanolamine-cas-63469-23 -8-n-3-dimethyl-amino-propyl-n-n-diisopropanolamine/

Extended reading:https://www.morpholine.org/polyurethane-blowing-catalyst-blowing-catalyst/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/17.jpg

Extended reading:https://www.bdmaee.net/niax-d- 22-gel-catalyst-dibbutyltin-dilaurate-momentive/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/63.jpg

admin
  • by Published on 2025-02-15 13:32:22
  • Reprinted with permission:https://www.morpholine.cc/18418.html
  • Application case of polyurethane catalyst A-1 and environmentally friendly production process
Comments  0  Guest  0