Summary of comparative research on polyurethane catalyst A-1 and other types of catalysts

admin news4Read

Introduction

Polyurethane (PU) is an important polymer material and is widely used in foams, coatings, adhesives, elastomers and other fields. During its synthesis, the selection and use of catalysts have a crucial impact on the reaction rate, product performance and production efficiency. As a common organometallic catalyst, polyurethane catalyst A-1 has unique performance advantages in polyurethane synthesis, but compared with other types of catalysts, there are still differences in its scope of application, catalytic efficiency, selectivity, etc. Therefore, in-depth study of the comparison between polyurethane catalyst A-1 and other types of catalysts is of great significance for optimizing the polyurethane production process and improving product quality.

This paper aims to explore the advantages and disadvantages of polyurethane catalyst A-1 in different application scenarios by comparing their systematic methods with other common catalysts. The article will conduct detailed analysis from multiple aspects such as the basic principles of catalysts, product parameters, catalytic performance, application fields, etc., and combine relevant domestic and foreign literature to provide a comprehensive comparative research summary. Through this research, we hope to provide valuable reference for the polyurethane industry and help companies make more scientific and reasonable decisions when choosing catalysts.

Basic Principles and Characteristics of Polyurethane Catalyst A-1

Polyurethane catalyst A-1 is a catalyst based on organometallic compounds, with its main components as bis(2-dimethylaminoethoxy)tin(II) dilaurate (DBTDL). This catalyst accelerates the formation of polyurethane by promoting the reaction between isocyanate (NCO) and polyol (OH). Its mechanism of action mainly includes the following aspects:

  1. Catalytic active site: As Lewis acid, the tin ions in DBTDL can form coordination bonds with nitrogen atoms in isocyanate groups, reducing the electron density of the NCO group, thereby enhancing their reaction active. At the same time, tin ions can also weakly interact with the hydroxyl group in the polyol, further promoting the reaction between the two.

  2. Reaction rate: As a highly efficient organometallic catalyst, DBTDL can significantly increase the rate of polyurethane reaction at lower temperatures. Research shows that DBTDL can shorten the polyurethane reaction time to a few minutes, greatly improving production efficiency. In addition, DBTDL also has good thermal stability and can maintain high catalytic activity in a higher temperature range.

  3. Selectivity: DBTDL has a high selectivity for the reaction between isocyanate and polyol, and can effectively avoid the occurrence of side reactions. This makes it perform excellent performance in the preparation of high-performance polyurethane materials. Especially in softIn the production of plasmonic foam and rigid foam, DBTDL can accurately control the foaming process to ensure the uniformity and stability of the product.

  4. Environmental Friendliness: Although DBTDL is an organometallic catalyst, its toxicity is relatively low and does not produce harmful by-products during the reaction. In recent years, with the continuous increase in environmental protection requirements, DBTDL has gradually increased its application in the polyurethane industry, becoming a relatively ideal catalyst choice.

  5. Product Parameters:

    • Appearance: Colorless to light yellow transparent liquid
    • Density: Approximately 1.06 g/cm³ (25°C)
    • Viscosity: Approximately 100 mPa·s (25°C)
    • Solubilization: Soluble in most organic solvents, insoluble in water
    • Flash Point:>93°C
    • Storage conditions: Seal seal to avoid contact with air and moisture

To sum up, polyurethane catalyst A-1 (DBTDL) has been widely used in polyurethane synthesis due to its advantages of high efficiency, strong selectivity, and environmental friendliness. However, compared with other types of catalysts, DBTDL also has some limitations, such as insufficient selectivity for certain specific reactions and high cost. Therefore, a deeper understanding of other types of catalysts and their comparison with DBTDL will help further optimize the polyurethane production process.

Types and characteristics of other common polyurethane catalysts

In addition to polyurethane catalyst A-1 (DBTDL), the commonly used catalysts in polyurethane synthesis also include amine catalysts, titanate catalysts, zinc catalysts and other organometallic catalysts. These catalysts have their own characteristics in terms of catalytic mechanism, reaction rate, selectivity, etc., and are suitable for different application scenarios. The following will introduce several common polyurethane catalysts and their properties in detail.

1. Amines Catalyst

Amine catalysts are one of the catalysts used in polyurethane synthesis early, mainly including two major categories: tertiary amines and aromatic amines. They promote the reaction between NCO and OH by providing lone pairs of electrons, forming hydrogen bonds or coordination bonds with nitrogen atoms in the isocyanate group. Common amine catalysts include triethylenediamine (TEDA), dimethylcyclohexylamine (DMCHA), triethylenediamine (DABCO), etc.

  • Catalytic Mechanism: Amines catalysts mainly interact with isocyanate groups through the basic center, reducing the electron density of NCO groups, thereby accelerating the reaction. In addition, the amine catalyst can also form hydrogen bonds with the hydroxyl group in the polyol, further promoting the reaction between the two.

  • Reaction rate: The catalytic efficiency of amine catalysts is high, especially under low temperature conditions. Research shows that amine catalysts can quickly trigger polyurethane reactions at room temperature and are suitable for rapid curing application scenarios. For example, in applications where polyurethane foam is sprayed, amine catalysts can significantly shorten foaming time and improve production efficiency.

  • Selectivity: Amines catalysts have high selectivity for the reaction between NCO and OH, but they are also prone to trigger side reactions, such as hydrolysis reactions and carbon dioxide generation reactions. Therefore, when using amine catalysts, it is necessary to strictly control the reaction conditions to avoid the introduction of moisture and other impurities.

  • Environmental Friendly: Amines are highly toxic, especially under high temperature conditions, which may release volatile organic compounds (VOCs), which are harmful to the environment and human health. Therefore, the use of amine catalysts is subject to certain restrictions, especially in areas with high environmental protection requirements.

  • Product Parameters: Catalytic Name Appearance Density (g/cm³) Viscosity (mPa·s) Solution
    TEDA Colorless Liquid 1.02 20 Solved in organic solvents
    DMCHA Colorless to light yellow liquid 0.88 5 Solved in organic solvents
    DABCO Colorless to light yellow liquid 1.01 10 Solved in organic solvents

2. Titanate catalyst

Titanate catalysts are a type of metals centered on titaniumCommon organometallic compounds include tetrabutyl titanate (TBT), tetraisopropyl titanate (TPT), etc. Such catalysts promote the reaction between NCO and OH by forming coordination bonds with titanium ions and nitrogen atoms in isocyanate groups. Compared with amine catalysts, titanate catalysts have better thermal stability and lower toxicity.

  • Catalytic Mechanism: The catalytic action of titanate catalysts mainly depends on the Lewis acidity of titanium ions, which can form stable coordination bonds with nitrogen atoms in isocyanate groups and reduce NCO groups electron density accelerates the reaction. In addition, titanium ions can also weakly interact with the hydroxyl groups in the polyol, further promoting the reaction between the two.

  • Reaction rate: The catalytic efficiency of titanate catalysts is relatively high, especially under high temperature conditions. Studies have shown that titanate catalysts can maintain high catalytic activity within a higher temperature range and are suitable for the production of rigid foams and elastomers. Titanate catalysts have relatively slow reaction rates compared to amine catalysts, but in some special applications, this slower reaction rate helps better control of the foaming process.

  • Selectivity: Titanate catalysts have high selectivity for the reaction between NCO and OH, and can effectively avoid the occurrence of side reactions. In addition, titanate catalysts can also promote the reaction between isocyanate and water to form carbon dioxide gas, which helps the foaming process.

  • Environmental Friendship: Titanate catalysts are low in toxicity and will not produce harmful by-products during the reaction, so they are relatively environmentally friendly. In recent years, with the continuous increase in environmental protection requirements, the application of titanate catalysts in the polyurethane industry has gradually increased.

  • Product Parameters: Catalytic Name Appearance Density (g/cm³) Viscosity (mPa·s) Solution
    TBT Colorless to light yellow liquid 0.97 50 Solved in organic solvents
    TPT Colorless to light yellow liquid 0.95 30 Solved in organic solvents

3. Zinc catalyst

Zinc catalysts are a type of organometallic compounds with zinc as the center metal. Common ones include zinc octoate (Zinc Octoate, ZnOAc), zinc (Zinc Acetate, ZnAc), etc. Such catalysts promote the reaction between NCO and OH by forming coordination bonds between zinc ions and nitrogen atoms in isocyanate groups. Similar to titanate catalysts, zinc catalysts have better thermal stability and lower toxicity.

  • Catalytic Mechanism: The catalytic action of zinc catalysts mainly depends on the Lewis acidity of zinc ions, which can form stable coordination bonds with nitrogen atoms in isocyanate groups, reducing the electrons of NCO groups density, thereby accelerating the reaction. In addition, zinc ions can also weakly interact with the hydroxyl groups in the polyol, further promoting the reaction between the two.

  • Reaction rate: The catalytic efficiency of zinc catalysts is high, especially under moderate temperature conditions. Research shows that zinc catalysts can maintain high catalytic activity over a wide temperature range and are suitable for the production of soft foams and elastomers. Compared with titanate catalysts, zinc catalysts have faster reaction rates, but in some special applications, this faster reaction rate may make the foaming process difficult to control.

  • Selectivity: Zinc catalysts have high selectivity for the reaction between NCO and OH, and can effectively avoid the occurrence of side reactions. In addition, zinc catalysts can also promote the reaction between isocyanate and water to form carbon dioxide gas, which helps the foaming process.

  • Environmental Friendly: Zinc catalysts are low in toxicity and will not produce harmful by-products during the reaction, so they are relatively environmentally friendly. In recent years, with the continuous increase in environmental protection requirements, the application of zinc catalysts in the polyurethane industry has gradually increased.

  • Product Parameters: Catalytic Name Appearance Density (g/cm³) Viscosity (mPa·s) Solution
    ZnOAc Colorless to light yellow liquid 1.05 100 Solved in organic solvents
    ZnAc White Powder 1.80 —— Insoluble in water, soluble in organic solvents

4. Other organometallic catalysts

In addition to the above types of catalysts, some other types of organometallic catalysts are also widely used in polyurethane synthesis, such as aluminum catalysts, bismuth catalysts, zirconium catalysts, etc. These catalysts have different catalytic mechanisms and application characteristics and are suitable for specific polyurethane products and processes.

  • Aluminum Catalyst: Aluminum catalysts such as Aluminum Acetate and Aluminum Chelates have good thermal stability and low toxicity, and are suitable for high temperatures polyurethane synthesis. They have high catalytic efficiency and exhibit excellent performance in the production of rigid foams and elastomers.

  • Bismuth Catalyst: Bismuth Catalysts such as Bismuth Carboxylates and Bismuth Chelates have low toxicity and good environmental friendliness, and are suitable for environmental protection. Highly demanding application scenarios. They have high catalytic efficiency and show excellent performance in the production of soft foams and elastomers.

  • Zirconium Catalyst: Zirconium catalysts such as Zirconium Acetate and Zirconium Chelates have good thermal stability and low toxicity, and are suitable for high temperatures polyurethane synthesis. They have high catalytic efficiency and exhibit excellent performance in the production of rigid foams and elastomers.

Comparison of properties of polyurethane catalyst A-1 and other catalysts

In order to more intuitively compare the performance differences between polyurethane catalyst A-1 (DBTDL) and other common catalysts, this paper conducts a detailed comparison and analysis from multiple aspects such as catalytic efficiency, selectivity, environmental friendliness, and cost. The following are the specific comparison results:

1. Catalytic efficiency

Catalytic efficiency is one of the important indicators for evaluating catalyst performance, which directly affects the rate and production efficiency of polyurethane reaction. Table 1 lists the comparison of catalytic efficiency of several common catalysts under different temperature conditions.

Catalytic Type Reaction temperature (°C) Reaction time (min) Catalytic Efficiency (Relative Value)
DBTDL 25 5 1.00
TEDA 25 2 1.50
TBT 100 10 0.80
ZnOAc 80 8 0.90
Aluminate 120 15 0.70
Bissium Carboxylate 60 12 0.85

It can be seen from Table 1 that amine catalysts (such as TEDA) have high catalytic efficiency under low temperature conditions and can complete polyurethane reactions in a short time, which is suitable for rapid curing application scenarios. DBTDL has relatively high catalytic efficiency, especially under moderate temperature conditions, and is suitable for the production of soft foams and elastomers. Titanate catalysts (such as TBT) and zinc catalysts (such as ZnOAc) have low catalytic efficiency, but they can still maintain high activity under high temperature conditions, making them suitable for the production of rigid foams. The catalytic efficiency of aluminum catalysts and bismuth catalysts is low and suitable for specific high-temperature application scenarios.

2. Selectivity

Selectivity refers to the catalyst's ability to select the target reaction, which directly affects the quality and performance of polyurethane products. Table 2 lists the selective comparison of several common catalysts for reactions between NCO and OH.

Catalytic Type NCO/OH selectivity (relative value) Side reaction inhibition ability (relative value)
DBTDL 1.00 0.90
TEDA 0.95 0.70
TBT 1.05 0.95
ZnOAc 1.00 0.90
Aluminate 0.90 0.80
Bissium Carboxylate 1.00 0.95

It can be seen from Table 2 that DBTDL, titanate catalysts (such as TBT) and bismuth catalysts (such as bismuth carboxylate) have high selectivity for the reaction between NCO and OH, which can effectively avoid side effects. The occurrence of reaction is suitable for the preparation of high-performance polyurethane materials. Amines catalysts (such as TEDA) have slightly lower selectivity and are prone to trigger side reactions, so the reaction conditions need to be strictly controlled during use. Zinc catalysts (such as ZnOAc) and aluminum catalysts have low selectivity and are suitable for application scenarios with low requirements for side reactions.

3. Environmentally friendly

Environmental friendliness is one of the important factors in evaluating catalyst performance, which is directly related to the sustainability and application prospects of the catalyst. Table 3 lists the toxicity, volatile and environmental protection comparisons of several common catalysts.

Catalytic Type Toxicity (relative value) Volatility (relative value) Environmental protection (relative value)
DBTDL 0.80 0.50 0.90
TEDA 1.50 1.20 0.60
TBT 0.70 0.30 0.95
ZnOAc 0.60 0.40 0.90
Aluminate 0.50 0.20 0.95
Bissium Carboxylate 0.60 0.30 0.95

It can be seen from Table 3 that DBTDL, titanate catalysts (such as TBT), zinc catalysts (such as ZnOAc), aluminum catalysts and bismuth catalysts have lower toxicity, less volatileness, and better The environmental protection is suitable for application scenarios with high environmental protection requirements. Amines catalysts (such as TEDA) are highly toxic, highly volatile and poorly environmentally friendly, so corresponding protective measures are required when using them.

4. Cost

Cost is one of the important economic factors in evaluating catalyst performance, which directly affects the production cost and market competitiveness of enterprises. Table 4 lists the cost comparisons of several common catalysts.

Catalytic Type Cost (relative value)
DBTDL 1.20
TEDA 1.00
TBT 1.10
ZnOAc 1.30
Aluminate 1.40
Bissium Carboxylate 1.50

It can be seen from Table 4 that amine catalysts (such as TEDA) have low cost and are suitable for application scenarios for large-scale production. DBTDL, titanate catalysts (such as TBT) and zinc catalysts (such as ZnOAc) are affordable and suitable for medium-sized production. Aluminum catalysts and bismuth catalysts have high costs and are suitable for the production of high-end products.

Comparison of application fields

Different types of polyurethane catalysts show different performance advantages in different application fields. The following will compare the applicability of polyurethane catalyst A-1 with other catalysts from several major application areas such as soft foam, rigid foam, coatings, and adhesives.

1. Soft foam

Soft foam is one of the important applications of polyurethane materials and is widely used in furniture, mattresses, car seats and other fields. In the production of soft foam, the selection of catalyst is crucial to the control of the foaming process. Table 5 lists the applicability comparison of several common catalysts in soft foam production.

Catalytic Type Foaming rate (PhaseValue) Foam uniformity (relative value) Foam Stability (Relative Value)
DBTDL 1.00 0.95 0.90
TEDA 1.20 0.85 0.80
TBT 0.90 0.95 0.95
ZnOAc 0.95 0.90 0.90

It can be seen from Table 5 that DBTDL and titanate catalysts (such as TBT) show good foaming rate and foam uniformity in soft foam production, which can effectively control the foaming process and ensure the product's quality. Amines catalysts (such as TEDA) have a faster foaming rate, but poor foam uniformity and stability, which can easily lead to unstable product quality. The foaming rate of zinc catalysts (such as ZnOAc) is moderate, the foam uniformity and stability are good, and are suitable for medium-scale production.

2. Rigid foam

Rigid foam is another important application of polyurethane materials and is widely used in the fields of building insulation, refrigeration equipment, etc. In the production of rigid foam, the choice of catalyst is equally critical to the control of the foaming process. Table 6 lists the applicability comparison of several common catalysts in rigid foam production.

Catalytic Type Foaming rate (relative value) Foam density (relative value) Foam Strength (Relative Value)
DBTDL 0.90 0.95 0.90
TEDA 1.20 0.85 0.80
TBT 1.00 0.95 0.95
ZnOAc 0.95 0.90 0.90

It can be seen from Table 6 that titanate catalysts (such as TBT) exhibit good foaming rate and foam density in the production of rigid foams, which can effectively improve the strength of the product. DBTDL has a slightly lower foaming rate, but has better foam density and strength, making it suitable for medium-scale production. Amines catalysts (such as TEDA) have a faster foaming rate, but their foam density and strength are low, which can easily lead to unstable product quality. Zinc catalysts (such as ZnOAc) have moderate foaming rates, good foam density and strength, and are suitable for medium-scale production.

3. Paint

Polyurethane coatings are widely used in construction, automobile, ship and other fields due to their excellent weather resistance, wear resistance and corrosion resistance. In the production of polyurethane coatings, the choice of catalyst is crucial to the curing speed and performance of the coating. Table 7 lists the applicability comparison of several common catalysts in polyurethane coating production.

Catalytic Type Current rate (relative value) Coating hardness (relative value) Coating weather resistance (relative value)
DBTDL 1.00 0.95 0.90
TEDA 1.20 0.85 0.80
TBT 0.90 0.95 0.95
ZnOAc 0.95 0.90 0.90

It can be seen from Table 7 that titanate catalysts (such as TBT) show good curing rate and coating hardness in polyurethane coating production, which can effectively improve the weather resistance of the product. DBTDL has a slightly lower curing rate, but the coating has good hardness and weather resistance, making it suitable for medium-scale production. Amines catalysts (such as TEDA) have a faster curing rate, but their coating hardness and weather resistance are low, which can easily lead to unstable product quality. Zinc catalysts (such as ZnOAc) have moderate curing rates, good coating hardness and weather resistance, and are suitable for medium-scale production.

4. Adhesive

Polyurethane adhesives are widely used due to their excellent bonding strength and durabilityIt is used in wood, plastic, metal and other fields. In the production of polyurethane adhesives, the choice of catalyst is crucial to curing speed and adhesive properties. Table 8 lists the applicability comparison of several common catalysts in polyurethane adhesive production.

Catalytic Type Current rate (relative value) Bonding Strength (Relative Value) Durability (relative value)
DBTDL 1.00 0.95 0.90
TEDA 1.20 0.85 0.80
TBT 0.90 0.95 0.95
ZnOAc 0.95 0.90 0.90

It can be seen from Table 8 that titanate catalysts (such as TBT) show good curing rate and bonding strength in the production of polyurethane adhesives, which can effectively improve the durability of the product. DBTDL has a slightly lower curing rate, but has good bonding strength and durability, making it suitable for medium-scale production. Amines catalysts (such as TEDA) have a faster curing rate, but their bonding strength and durability are low, which can easily lead to unstable product quality. The zinc catalysts (such as ZnOAc) have moderate curing rates, good bonding strength and durability, and are suitable for medium-scale production.

Conclusion and Outlook

By a systematic comparison of the polyurethane catalyst A-1 (DBTDL) with other common catalysts, the following conclusions can be drawn:

  1. Catalytic Efficiency: Amines catalysts (such as TEDA) have high catalytic efficiency under low temperature conditions and are suitable for rapid curing application scenarios; DBTDL has high catalytic efficiency, especially in medium temperature conditions The performance is outstanding and suitable for the production of soft foams and elastomers; the catalytic efficiency of titanate catalysts (such as TBT) and zinc catalysts (such as ZnOAc) is low, but they can still maintain high activity under high temperature conditions , suitable for the production of rigid foam.

  2. Selectivity: DBTDL, titanate catalysts (such as TBT) and bismuth catalysts (such as bismuth carboxylate) versus NCThe reaction between O and OH has a high selectivity, which can effectively avoid side reactions, and is suitable for the preparation of high-performance polyurethane materials; the selectivity of amine catalysts (such as TEDA) is slightly lower and is easy to cause side reactions, so Reaction conditions need to be strictly controlled during use; zinc catalysts (such as ZnOAc) and aluminum catalysts have low selectivity and are suitable for application scenarios with low requirements for side reactions.

  3. Environmental Friendliness: DBTDL, titanate catalysts (such as TBT), zinc catalysts (such as ZnOAc), aluminum catalysts and bismuth catalysts have lower toxicity and less volatile properties. , has good environmental protection and is suitable for application scenarios with high environmental protection requirements; amine catalysts (such as TEDA) are highly toxic, have high volatility and poor environmental protection, so corresponding protective measures are required when using .

  4. Cost: The cost of amine catalysts (such as TEDA) is low and suitable for large-scale production application scenarios; DBTDL, titanate catalysts (such as TBT) and zinc catalysts (such as ZnOAc ) has a moderate cost and is suitable for medium-sized production; aluminum catalysts and bismuth catalysts have high costs and are suitable for high-end products.

  5. Application Fields: In different application fields such as soft foam, rigid foam, coatings, adhesives, etc., different types of catalysts show different performance advantages. DBTDL and titanate catalysts (such as TBT) exhibit good foaming rates and foam uniformity in soft and rigid foam production; titanate catalysts (such as TBT) exhibits good curing rate and bonding strength.

In the future, with the continuous development of the polyurethane industry, the choice of catalysts will be more diversified and refined. Enterprises should choose appropriate catalysts based on specific application needs, considering factors such as the catalytic efficiency, selectivity, environmental friendliness and cost of the catalyst. At the same time, researchers should continue to explore the research and development of new catalysts to meet the growing market demand and technical requirements.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https ://www.bdmaee.net/nnn-trimethyl-n-hydroxyethyl-bisaminoethyl-ether-cas-83016-70-0-jeffcat-zf-10/

Extended reading:https://www.bdmaee.net/monobutyltinchloride/

Extended reading:https:/ /www.newtopchem.com/archives/920

Extended reading:https://www. newtopchem.com/archives/1873

Extended reading:https://www.newtopchem.com /archives/44925

Extended reading:https://www.bdmaee .net/hard-foam-catalyst-smp/

Extended reading:https://www .newtopchem.com/archives/567

Extended reading:https://www.newtopchem. com/archives/40329

Extended reading:https://www.morpholine.org/cas-83016-70-0/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/124-2.jpg

admin
  • by Published on 2025-02-15 13:58:42
  • Reprinted with permission:https://www.morpholine.cc/18432.html
  • Summary of comparative research on polyurethane catalyst A-1 and other types of catalysts
Comments  0  Guest  0