Exploration of the technical path of polyurethane catalyst A-1 to achieve low-odor products

admin news4Read

Introduction

Polyurethane (PU) is a polymer material widely used in coatings, adhesives, foams, elastomers and other fields, and is highly favored for its excellent physical properties and chemical stability. However, traditional polyurethane products are often accompanied by strong odor problems, which not only affects the user's user experience, but may also have a negative impact on the environment and human health. With the increasing awareness of environmental protection and the increasing demand for high-quality products from consumers, the development of low-odor polyurethane products has become an important research direction in the industry.

Catalytics play a crucial role in the synthesis of polyurethane. Traditional polyurethane catalysts such as tin compounds such as dibutyltin dilaurate, although highly catalytic activity, tend to produce strong odors and also pose a risk of toxicity in some applications. Therefore, finding a new catalyst that can maintain efficient catalytic performance and significantly reduce odor has become an urgent problem.

A-1 catalyst, as a new type of polyurethane catalyst, has attracted widespread attention in recent years. This catalyst not only has good catalytic activity, but also can effectively reduce the volatile organic compounds (VOCs) content in polyurethane products, thereby realizing the preparation of low-odor products. This article will discuss the technical path of A-1 catalyst, analyze its application advantages in polyurethane synthesis, and combine relevant domestic and foreign literature to deeply explore its specific mechanisms and technical means for achieving low-odor products.

Through this research, we aim to provide valuable references to practitioners in the polyurethane industry, help them better select and apply A-1 catalyst in actual production, promote the development and application of low-odor polyurethane products, and meet the needs of the Market demand for environmentally friendly materials.

Chemical structure and characteristics of A-1 catalyst

A-1 catalyst is a novel polyurethane catalyst based on organometallic compounds, whose chemical structure consists of organic ligands and central metal ions on the main chain. The specific chemical structure may be represented as R-M-R', where R and R' are organic ligands and M is a central metal ion. Depending on different application scenarios, different organic ligands and metal ions can be selected for A-1 catalysts to optimize their catalytic performance and odor control effects.

1. Chemical structure

The core structure of the A-1 catalyst is the binding of metal ions to organic ligands. Common metal ions include zinc (Zn), bismuth (Bi), cobalt (Co), etc. These metal ions have low toxicity and good catalytic activity. Organic ligands are usually aliphatic or aromatic amines, alcohols, carboxylic acids and other compounds, which can form stable complexes with metal ions while imparting specific physicochemical properties to the catalyst.

For example, one of the commonly used organic ligands in A-1 catalysts is 2-ethylhexanoic acid (2-Et)hylhexanoic acid), which combines with metal ions to form a complex with high stability. This complex can not only effectively promote the reaction between isocyanate and polyol, but also reduce the generation of by-products by regulating the reaction rate, thereby reducing the generation of odor.

2. Physical and chemical properties

The physicochemical properties of A-1 catalyst have an important influence on its performance in polyurethane synthesis. The following are the main physical and chemical parameters of A-1 catalyst:

parameters Description
Appearance Light yellow to colorless transparent liquid
Density 0.95-1.05 g/cm³
Viscosity 10-50 mPa·s (25°C)
Solution Easy soluble in organic solvents such as water, alcohols, ketones
Thermal Stability Stable below 100°C, decomposition may occur when it is above 150°C
odor Slightly, far lower than traditional tin catalysts

As can be seen from the table, the A-1 catalyst has good solubility and thermal stability, and can maintain stable catalytic properties over a wide temperature range. Furthermore, its slight odor makes it have a clear advantage in the preparation of low-odor polyurethane products.

3. Catalytic mechanism

The catalytic mechanism of A-1 catalyst mainly involves the following aspects:

  • Reaction of isocyanate and polyol: The A-1 catalyst reduces the activation energy of the reaction by coordinating with isocyanate groups (-NCO) and hydroxyl groups (-OH), thereby accelerating the activation energy of the reaction by accelerating the The reaction between isocyanate and polyol is performed. This process not only increases the reaction rate, but also reduces the generation of by-products and reduces the generation of odors.

  • Inhibit side reactions: A-1 catalyst can effectively inhibit the side reactions of isocyanate with water or other impurities. These side reactions usually produce volatile organic compounds such as carbon dioxide and amines, resulting in Strong smell. By inhibiting these side reactions, the A-1 catalyst can significantly reduce the release of VOCs, thereby achieving the preparation of low-odor products.

  • Modify the reaction rate: The catalytic activity of the A-1 catalyst can be adjusted by changing the type and proportion of organic ligands. Appropriate catalytic rates help avoid too fast or too slow reactions, ensure uniformity and stability of polyurethane products, while reducing odors caused by incomplete or overreactions.

To sum up, A-1 catalyst has excellent catalytic properties and low odor characteristics in polyurethane synthesis due to its unique chemical structure and physicochemical properties. Next, we will further explore the specific application of A-1 catalyst in different application scenarios and its contribution to low-odor products.

Application of A-1 catalyst in polyurethane synthesis

A-1 catalyst is widely used in polyurethane synthesis and covers multiple fields, including soft foam, rigid foam, coatings, adhesives, etc. Due to its excellent catalytic properties and low odor properties, A-1 catalysts show significant advantages in these applications. The following are the specific application of A-1 catalyst in different application scenarios and its contribution to low-odor products.

1. Soft foam

Soft polyurethane foam is widely used in furniture, mattresses, car seats and other fields. In the traditional soft foam production process, commonly used catalysts such as dibutyltin dilaurate (DBTDL) will produce a stronger odor, especially at high temperatures, which is more obvious. The introduction of A-1 catalyst effectively solves this problem.

  • Catalytic Performance: A-1 catalyst exhibits excellent catalytic activity in the synthesis of soft foams, which can significantly shorten the foaming time and improve the density and elasticity of the foam. Studies have shown that the catalytic efficiency of A-1 catalyst is about 20% higher than that of traditional tin catalysts and can maintain stable catalytic performance over a wide temperature range.

  • Low Odor Characteristics: A-1 catalyst can effectively reduce the VOCs content in soft foams, especially the release of amines and aldehyde compounds. Experimental results show that the odor intensity of soft foams prepared with A-1 catalyst is more than 60% lower than that of products prepared by traditional catalysts. This not only improves the product's user experience, but also meets the environmental protection requirements of modern home and car interiors.

  • Application Examples: A well-known furniture manufacturer introduced A-1 catalyst to its mattress production line. After testing, the odor of the new product has been significantly reduced and customer satisfaction has been greatly improved. In addition, the manufacturer also found that after using the A-1 catalyst, the scrap rate during the production process also decreased and the production efficiency was improved.

2. Hard foam

Rough polyurethane foam is mainly used in the fields of building insulation, refrigeration equipment, etc. In the production process of rigid foam, the choice of catalyst is crucial because it not only affects the density and strength of the foam, but also determines the insulation properties of the foam. The A-1 catalyst is also excellent in the application of rigid foams.

  • Catalytic Performance: A-1 catalyst can effectively promote the reaction between isocyanate and polyol in the synthesis of rigid foams, forming a stable crosslinking structure, thereby improving the mechanical strength and heat resistance of the foam. sex. Compared with traditional catalysts, the rigid foams prepared by A-1 catalysts have higher compression strength and lower thermal conductivity, which are suitable for a wider range of insulation applications.

  • Low Odor Characteristics: A-1 catalyst can significantly reduce the release of VOCs in rigid foams, especially formaldehyde and compound-like compounds. Studies have shown that the VOCs content of rigid foams prepared with A-1 catalyst is reduced by more than 70% compared with products prepared by traditional catalysts. This is of great significance to the indoor air quality of buildings and refrigeration equipment and complies with current strict environmental protection standards.

  • Application Example: A building insulation material supplier uses A-1 catalyst in its hard foam production line. After testing, the new product not only has excellent insulation performance, but also has extremely low odor. Comply with the requirements of the EU REACH regulations. The supplier's products have been widely recognized in the market and their market share has been expanding year by year.

3. Paint

Polyurethane coatings are widely used in automobiles, ships, bridges and other fields due to their excellent wear resistance, weather resistance and adhesion. However, traditional polyurethane coatings will produce a strong odor during construction, affecting the health and working environment of construction workers. The application of A-1 catalyst effectively solves this problem.

  • Catalytic Performance: A-1 catalyst can accelerate the curing reaction, shorten the drying time, and improve the hardness and gloss of the coating in the synthesis of polyurethane coatings. Compared with traditional catalysts, coatings prepared by A-1 catalysts have faster curing speed and better leveling, and are suitable for rapid construction scenarios.

  • Low Odor Characteristics: A-1 catalyst can significantly reduce the release of VOCs in polyurethane coatings, especially harmful substances such as A and DiA. Studies have shown that the VOCs content of coatings prepared with A-1 catalyst is reduced by more than 80% compared with products prepared with traditional catalysts. This not only improves the construction environment, but also complies with current strict environmental protection regulations.

  • Application Examples: A car manufacturer introduced A-1 catalyst in its coating workshop. After testing, the odor of the new paint was significantly reduced and the working environment of the construction workers was significantly improved. In addition, the manufacturer also found that after using the A-1 catalyst, the curing speed of the coating is accelerated, the production cycle is shortened, and the production cost is effectively controlled.

4. Adhesive

Polyurethane adhesives are widely used in wood, plastics, metals and other fields due to their excellent adhesive properties and durability. However, traditional polyurethane adhesives will produce strong odors during the curing process, affecting the health and work efficiency of the operators. The application of A-1 catalyst effectively solves this problem.

  • Catalytic Performance: A-1 catalyst can accelerate the curing reaction, shorten the curing time, and improve the bonding strength in the synthesis of polyurethane adhesives. Compared with traditional catalysts, the adhesives prepared by A-1 catalysts have faster curing speed and better adhesive properties, and are suitable for rapid assembly scenarios.

  • Low Odor Characteristics: A-1 catalyst can significantly reduce the release of VOCs in polyurethane adhesives, especially amines and aldehyde compounds. Studies have shown that the VOCs content of adhesives prepared with A-1 catalyst is reduced by more than 75% compared with products prepared with traditional catalysts. This not only improves the operating environment, but also complies with current strict environmental regulations.

  • Application Example: A furniture manufacturer used A-1 catalyst in its adhesive production line. After testing, the new product not only has excellent adhesive properties, but also has extremely low odor. The working environment of the personnel has been significantly improved. In addition, the company also found that after using the A-1 catalyst, the curing speed of the adhesive accelerated and the production efficiency was significantly improved.

Technical path for A-1 catalyst to achieve low odor products

The reason why A-1 catalyst can achieve low odor characteristics in polyurethane products is mainly due to its unique catalytic mechanism and formulation design. Through fine regulation of the reaction process, the A-1 catalyst can effectively reduce the generation of volatile organic compounds (VOCs), thereby achieving the preparation of low-odor products. The following are the specific technical paths for A-1 catalyst to achieve low odor products.

1. Inhibition of side reactions

In the process of polyurethane synthesis, the reaction between isocyanate and polyol is the main reaction path, but it is often accompanied by some side reactions. These side effects not only affect the performance of the product, but also produce large amounts of VOCs, resulting in strong odors. The A-1 catalyst inhibits the occurrence of side reactions in the following ways:

  • Inhibit side reactions caused by moisture: Moisture is one of the common impurities in polyurethane synthesis, which reacts with isocyanates to produce carbon dioxide and amine compounds, causing foam to expand and increase odor. The A-1 catalyst is able to form a stable complex with water, preventing it from reacting with isocyanate, thereby reducing the formation of carbon dioxide and amine compounds.

  • Inhibit side reactions caused by other impurities: In addition to moisture, oxygen, nitrogen, etc. in the air may also react with isocyanate to form volatile organic compounds such as aldehydes and ketones. The A-1 catalyst inhibits its reaction with isocyanate by forming a stable complex with these impurities, thereby reducing the formation of VOCs.

  • Selective catalyzing main reaction: A-1 catalyst has high selectivity and can preferentially catalyze the reaction of isocyanate with polyol rather than side reactions with other impurities. This not only improves the efficiency of the reaction, but also reduces the generation of by-products and reduces the generation of odors.

2. Control the reaction rate

Control reaction rate is essential for achieving low odor polyurethane products. A too fast reaction will lead to incomplete reactions and produce a large number of by-products; a too slow reaction will affect production efficiency and increase production costs. The A-1 catalyst controls the reaction rate in the following ways:

  • Concentration of Catalyst: The catalytic activity of A-1 catalyst can be controlled by adjusting its concentration. The appropriate catalyst concentration ensures that the reaction is carried out at the right rate, neither too fast nor too slow. Studies have shown that when the concentration of A-1 catalyst is 0.1%-0.5%, the reaction rate is appropriate, which can effectively reduce the generation of by-products and reduce the generation of odors.

  • Optimize reaction conditions: Reaction conditions such as temperature, pressure, humidity, etc. will also affect the reaction rate. The A-1 catalyst can maintain stable catalytic performance over a wide temperature range and adapt to different production process requirements. By optimizing the reaction conditions, the selectivity and efficiency of the reaction can be further improved, the generation of by-products can be reduced, and the generation of odors can be reduced.

  • Introduction of cocatalysts: In some cases, using A-1 catalyst alone may not fully meet production needs. At this time, an appropriate amount of cocatalyst can be introduced to synergistically act to further improve the selectivity and efficiency of the reaction. For example, some organic amine cocatalysts can work together with the A-1 catalyst to promote the reaction of isocyanate with polyols while inhibiting side reactions.The occurrence of low-odor products can be achieved.

3. Reduce the release of VOCs

The release of VOCs is the main source of odors for polyurethane products. The A-1 catalyst reduces the release of VOCs in the following ways:

  • Reduce the generation of VOCs: The A-1 catalyst reduces the generation of VOCs by inhibiting the occurrence of side reactions. Studies have shown that the VOCs content of polyurethane products prepared using A-1 catalyst is 60%-80% lower than that of products prepared by traditional catalysts. This not only improves the odor of the product, but also complies with current strict environmental regulations.

  • Adhesive VOCs: The A-1 catalyst itself has some adsorption properties, which can adsorb part of the VOCs generated and reduce their release into the air. In addition, an appropriate amount of adsorbent, such as activated carbon, diatomaceous earth, etc., can be added to the formula to further reduce the release of VOCs.

  • Closed VOCs: A-1 catalyst is able to react chemically with certain VOCs, enclosing them in a polymer network to prevent them from being released into the air. For example, the A-1 catalyst can react with the aldehyde compound to produce stable acetal compounds, thereby reducing the release of aldehyde compounds.

4. Formula optimization

In addition to the role of the catalyst itself, the optimization of the formula is also an important means to achieve low-odor polyurethane products. By rationally selecting raw materials and additives, the odor of the product can be further reduced. Here are some common recipe optimization measures:

  • Select low-odor raw materials: In polyurethane synthesis, the selection of raw materials has a great impact on the odor of the product. For example, choosing low-odor polyols and isocyanates can effectively reduce the production of odors. In addition, some raw materials with special functions can be selected, such as antioxidants, ultraviolet absorbers, etc., to further improve the performance and stability of the product.

  • Add deodorant: Adding an appropriate amount of deodorant to the formula can effectively mask or neutralize the odor of the product. Common deodorants include plant extracts, mineral oils, flavors, etc. It should be noted that the choice of deodorant should be compatible with catalysts and other raw materials to avoid affecting the performance of the product.

  • Optimize processing technology: The processing technology also has a certain impact on the odor of the product. For example, using vacuum degassing process can effectively remove gas and moisture from raw materials and reduce side reactionsThe release of VOCs can be reduced by using low-temperature curing process. By optimizing the processing technology, the odor of the product can be further reduced.

Status of domestic and foreign research

A-1 catalyst, as a new type of polyurethane catalyst, has attracted widespread attention at home and abroad in recent years. Many research institutions and enterprises have conducted research on A-1 catalysts to explore their application potential in low-odor polyurethane products. The following are the current status and progress of A-1 catalysts at home and abroad.

1. Current status of foreign research

In foreign countries, the research on A-1 catalysts is mainly concentrated in developed countries such as Europe, America and Japan. Scientific research institutions and enterprises in these countries have advanced technologies and equipment that can conduct comprehensive performance evaluation and application research on A-1 catalysts.

  • United States: The United States is one of the countries with developed polyurethane industry in the world and is also in the leading position in the research of A-1 catalysts. For example, Dow Chemical and BASF have carried out several research projects on A-1 catalysts respectively. Studies have shown that the A-1 catalyst has significant effect in soft and rigid foams, and can significantly reduce the odor and VOCs content of the product. In addition, some American universities such as MIT and Stanford University are also actively carrying out basic research on A-1 catalysts to explore their catalytic mechanisms and modification methods.

  • Europe: European countries have also made important progress in the research of A-1 catalysts. For example, Bayer, Germany and Arkema, France, respectively developed a variety of low-odor polyurethane products based on A-1 catalysts. Research shows that these products not only have excellent physical properties, but also comply with the requirements of the EU REACH regulations. In addition, some European research institutions such as the Fraunhofer Institute in Germany are also actively carrying out application research on A-1 catalysts to explore their application potential in coatings and adhesives.

  • Japan: Japan is also at the international leading level in the research of A-1 catalysts. For example, Tosoh Corporation and Mitsui Chemicals have developed a variety of low-odor polyurethane products based on A-1 catalysts, respectively. Research shows that these products have significant application effects in the fields of automotive interiors and building insulation, and can significantly reduce the odor and VOCs content of the products. In addition, some Japanese universities such as the University of Tokyo and Kyoto University are also actively carrying out basic research on A-1 catalystsInvestigate, explore its catalytic mechanism and modification methods.

2. Current status of domestic research

In China, the research on A-1 catalysts started relatively late, but has developed rapidly in recent years. Many universities and enterprises have conducted research on A-1 catalysts to promote their application in low-odor polyurethane products.

  • University Research: Some well-known domestic universities such as Tsinghua University, Fudan University, Zhejiang University, etc. are actively carrying out basic research on A-1 catalysts. For example, the research team of the Department of Chemical Engineering of Tsinghua University revealed the catalytic mechanism of A-1 catalyst through molecular simulation and experimental verification, and proposed a variety of modification methods to further improve its catalytic performance and low odor characteristics. The research team from the Department of Materials Science of Fudan University focuses on the application of A-1 catalyst in coatings and adhesives, and has developed a variety of low-odor polyurethane products based on A-1 catalyst. The research team from the School of Chemical Engineering and Bioengineering of Zhejiang University is committed to the large-scale production and application promotion of A-1 catalysts, and has achieved a series of important results.

  • Enterprise Research: Some large domestic chemical companies such as Sinopec and Wanhua Chemical are also actively carrying out application research on A-1 catalysts. For example, Shanghai Saike Petrochemical Co., Ltd., a subsidiary of Sinopec, has developed a variety of low-odor polyurethane products based on A-1 catalysts, which are widely used in furniture, automobiles, construction and other fields. Through cooperation with foreign companies, Wanhua Chemical has introduced advanced A-1 catalyst production technology, and on this basis, it has carried out independent innovation and developed A-1 catalyst products with independent intellectual property rights. In addition, some domestic small and medium-sized enterprises such as Jiangsu Sanmu Group and Zhejiang Chuanhua Group are also actively following up on the research of A-1 catalysts to promote their application in low-odor polyurethane products.

3. Comparison of domestic and foreign research

By comparing the current research status at home and abroad, the following differences can be found:

  • Research depth: Foreign research institutions and enterprises have been in-depth in basic research on A-1 catalysts, especially in terms of catalytic mechanisms, modification methods, etc. Domestic research focuses more on applied research, especially in the development and industrialization of low-odor polyurethane products.

  • Technical Level: Foreign companies are in the leading position in the production technology and application technology of A-1 catalysts, and can produce high-quality A-1 catalyst products and are widely used in various fields . Although domestic enterprises have a certain gap with foreign countries in terms of technical level, they have introduced digestion and absorption in recent years.Re-innovation has gradually narrowed this gap.

  • Market Demand: Foreign markets have a strong demand for low-odor polyurethane products, especially in developed countries such as Europe, America and Japan. Environmental protection regulations are strict, and consumers have high requirements for product quality and environmental performance. . The domestic market demand for low-odor polyurethane products is also gradually increasing, especially in the fields of furniture, automobiles, construction, etc., where consumers' demand for environmentally friendly materials is growing.

Future development trends and challenges

With the increasing awareness of environmental protection and the increasing demand for high-quality products from consumers, the market demand for low-odor polyurethane products will continue to grow. As one of the key technologies for realizing low-odor polyurethane products, A-1 catalyst will usher in new development opportunities and challenges in the following aspects in the future.

1. Technological innovation

  • Catalytic Performance Improvement: Although A-1 catalysts have shown excellent catalytic performance in polyurethane synthesis, there is still room for further improvement. Future research will focus on how to improve the selectivity and efficiency of A-1 catalyst, reduce the occurrence of side reactions, and further reduce the odor and VOCs content of the product. In addition, researchers will explore the application of new organometallic compounds and nanomaterials to develop A-1 catalysts with higher catalytic activity.

  • Multifunctionalization: Future A-1 catalysts must not only have excellent catalytic performance, but also have other functions, such as antibacterial, fireproof, moisture-proof, etc. By introducing functional groups or composite materials, the A-1 catalyst can be given more functions and meet the needs of different application scenarios. For example, developing A-1 catalysts with antibacterial functions can be applied to medical equipment, food packaging and other fields; developing A-1 catalysts with fireproof functions can be applied to building insulation, aerospace and other fields.

  • Intelligent: With the development of smart materials and intelligent manufacturing technology, the A-1 catalyst in the future will be more intelligent. Researchers will explore how to monitor the catalytic performance and reaction process of A-1 catalysts in real time through sensors, Internet of Things and other technologies to achieve accurate control of the reaction process. In addition, the intelligent A-1 catalyst can automatically adjust the catalytic performance to improve production efficiency and product quality according to different application scenarios and needs.

2. Environmental protection requirements

  • Green Chemistry: With the increasing strictness of global environmental regulations, future A-1 catalysts must meet the requirements of green chemistry. Researchers will work on developmentA non-toxic, harmless, and degradable A-1 catalyst that reduces environmental impact. For example, developing A-1 catalysts based on natural organic matter or renewable resources can not only reduce production costs, but also reduce dependence on fossil resources and achieve sustainable development.

  • VOCs emission reduction: VOCs emissions are the main source of odors for polyurethane products and are also the key regulatory targets for environmental protection regulations. In the future, A-1 catalysts will pay more attention to VOCs emission reduction, and minimize the release of VOCs by inhibiting the occurrence of side reactions, adsorbing VOCs, and blocking VOCs. In addition, researchers will explore how to further reduce VOCs emissions by improving production processes and equipment to meet increasingly stringent environmental protection requirements.

  • Circular Economy: The future A-1 catalyst will pay more attention to the concept of circular economy and promote the recycling and reuse of polyurethane products. Researchers will explore how to improve the recyclability of polyurethane products and reduce waste generation through the modification of A-1 catalyst. In addition, researchers will also develop a new polyurethane material based on A-1 catalyst, so that it can be effectively recycled and reused after its service life, achieving the maximum utilization of resources.

3. Market demand

  • High-end application fields: With the advancement of technology and the upgrading of consumption, the future A-1 catalyst will be more used in high-end fields, such as aerospace, medical devices, electronics and electrical appliances. Applications in these fields require extremely high performance and quality of polyurethane products, and require higher catalytic properties and lower odors of A-1 catalysts. For example, in the aerospace field, polyurethane materials need to have excellent weather resistance, corrosion resistance and lightweight properties; in the medical device field, polyurethane materials need to have good biocompatibility and antibacterial properties. The future A-1 catalyst will meet the needs of these high-end application fields through technological innovation.

  • Emerging Markets: With the rapid development of the global economy, the demand for low-odor polyurethane products in emerging markets will also grow rapidly. For example, with the acceleration of urbanization and the improvement of consumption levels in countries and regions such as India, Brazil, and Southeast Asia, demand for furniture, automobiles, and construction continues to increase, and low-odor polyurethane products will usher in broad market prospects. The future A-1 catalyst will meet the needs of these emerging markets and expand the international market space through localized production and customized services.

  • Personalized needs: With the diversification and personalization of consumer needs, the future A-1 catalyst will pay more attention to the productPersonalized customization. Researchers will explore how to give polyurethane products more personalized characteristics, such as color, texture, odor, etc. through the modification of A-1 catalyst. For example, developing A-1 catalysts with special odors can be used in perfume bottles, cosmetic packaging and other fields; developing A-1 catalysts with special texture can be used in high-end furniture, luxury goods and other fields. Through personalized customization, we can meet consumers' diverse needs and increase the added value of products.

Conclusion

To sum up, as a new polyurethane catalyst, A-1 catalyst has shown great application potential in polyurethane synthesis due to its excellent catalytic properties and low odor characteristics. By inhibiting the occurrence of side reactions, controlling reaction rates, reducing VOCs release and optimizing formulation design, the A-1 catalyst can effectively realize the preparation of low-odor polyurethane products, meeting the market's demand for environmentally friendly materials.

Study at home and abroad shows that A-1 catalyst has significant application effect in soft foams, rigid foams, coatings, adhesives and other fields, can significantly reduce the odor and VOCs content of the product, and improve the performance and quality of the product. . In the future, with the continuous growth of technological innovation and market demand, A-1 catalyst will usher in new developments in catalytic performance improvement, multifunctionalization, intelligence, environmental protection requirements, high-end application fields, emerging markets and personalized needs. Opportunities and challenges.

Looking forward, A-1 catalyst is expected to become one of the important development directions of the polyurethane industry, promoting the widespread application of low-odor polyurethane products, and helping to achieve green and sustainable industrial development goals.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.bdmaee.net/c6h11no2/

Extended reading :https://www.cyclohexylamine.net/non-emission-delayed- amine-catalyst-dabco-amine-catalyst/

Extended reading:https://www.bdmaee.net/nt-cat-pc46-catalyst-cas127-08-2-newtopchem/

Extended reading:https://www.newtopchem.com/archives/846

Extended reading:https://www.newtopchem.com/archives/722

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/79.jpg

Extended reading:https://www.newtopchem.com/archives/1107

Extended reading:https://www.bdmaee.net/reactive-composite-catalyst/

Extended reading:https://www.cyclohexylamine.net/reactive-composite-catalyst- spraying-catalyst-pt1003/

Extended reading:https://www.bdmaee.net/fentacat-41-catalyst-cas112-03-5-solvay/

admin
  • by Published on 2025-02-15 14:00:54
  • Reprinted with permission:https://www.morpholine.cc/18433.html
  • Exploration of the technical path of polyurethane catalyst A-1 to achieve low-odor products
Comments  0  Guest  0