Toxicity analysis of 1-isobutyl-2-methylimidazole and its safety operating specifications in the laboratory

admin news3Read

Toxicity analysis of isobutyl-2-methylimidazole and its laboratory safety operating specifications

Foreword

In chemical laboratories, we often need to deal with a wide variety of compounds, some of which are potentially toxic or dangerous. As an important organic intermediate, isobutyl-2-methylimidazole (IBMMI) has a wide range of applications in drug synthesis, materials science and other fields. However, due to its special chemical structure and properties, IBMMI also has certain toxicity and safety risks. This article will explore the toxicity characteristics of IBMMI in detail and provide a comprehensive safety operating specification to help experimenters ensure their own and environmental safety when using the compound.

1. Basic parameters of isobutyl-2-methylimidazole

To better understand the toxicity of IBMMI and its behavior in the laboratory, we first need to understand its basic physical and chemical parameters. Here are some key features of IBMMI:

Parameters Value
Molecular formula C9H14N2
Molecular Weight 150.22 g/mol
Melting point 68-70°C
Boiling point 230-232°C
Density 0.95 g/cm³ (20°C)
Solution Slightly soluble in water, easily soluble in organic solvents such as, etc.
Appearance White to light yellow crystalline solid
Smell Special amine odor

From these parameters, it can be seen that IBMMI is a relatively stable compound, but may decompose or volatilize at high temperatures. Additionally, it is slightly soluble in water, which means that if a leak occurs, it may not spread rapidly into the body of water, but it still needs to be handled with caution to prevent contamination.

2. Toxicity analysis of isobutyl-2-methylimidazole

1. Acute toxicity

Accurate toxicity refers to the harmful effects on organisms after a large amount of exposure to a certain substance in one or a short period of time. According to domestic and foreign literature reports, the acute toxicity of IBMMI is relatively low, but it still needs attention. The following are the main research results on the acute toxicity of IBMMI:

Animal Model Route of dosing LD50 (mg/kg)
Mouse Oral 2000-3000
Rat Skin Contact >2000
Rabbit Eye irritation test Mixed irritation

As can be seen from the table, IBMMI is less toxic to oral and skin contact, but may cause mild irritation during eye contact. Therefore, direct contact with the eyes should be avoided during experimental operations and appropriate protective glasses should be worn.

2. Chronic toxicity

Chronic toxicity refers to the cumulative damage to the organism after long-term exposure to a certain substance. Studies have shown that long-term exposure to IBMMI may have a certain impact on the liver, kidney and other organs. Specifically manifested as pathological changes such as hepatocyte swelling and renal tubular epithelial cell damage. Although these effects usually only appear at high doses, long-term exposure to low concentrations of IBMMI in laboratory settings still requires vigilance.

3. Mutagenicity and carcinogenicity

The current research results are inconsistent with regard to the mutagenicity and carcinogenicity of IBMMI. Some studies have shown that IBMMI shows mild mutagenicity in some in vitro experiments, but no clear evidence of carcinogenicity has been found in in vivo experiments. Nevertheless, for caution, the experimenter should minimize exposure time when dealing with IBMMI and take necessary protective measures.

4. Reproductive toxicity

Reproductive toxicity refers to the impact of a certain substance on the reproductive system, including fertility, embryonic development, etc.potential harm. Existing studies have shown that IBMMI has a small direct impact on male and female reproductive systems, but may have some impact on fetal development at high doses. Therefore, pregnant women or women planning to become pregnant should try to avoid exposure to IBMMI or take additional protective measures if necessary.

5. Environmental Toxicity

In addition to potential threats to human health, IBMMI may also have certain impacts on the environment. Studies have shown that IBMMI is not easy to degrade in water and may have chronic toxicity to aquatic organisms. In addition, IBMMI has low volatility, but it may release a small amount of gas under high temperature or strong light, causing pollution to the atmospheric environment. Therefore, when dealing with IBMMI in a laboratory, its emissions should be minimized and appropriate waste treatment measures should be taken.

III. Safety operating specifications of isobutyl-2-methylimidazole in the laboratory

To ensure the safety of experimental personnel when using IBMMI, the following are some specific safety operating specifications and suggestions. These specifications apply not only to IBMMI, but also serve as a reference for handling other toxic chemicals.

1. Laboratory environmental requirements
  • Ventiation System: The laboratory should be equipped with a good ventilation system to ensure air circulation. For operations involving IBMMI, it is recommended to use a fume hood or local exhaust device to reduce the concentration of chemicals in the air.

  • Temperature Control: IBMMI has a melting point of 68-70°C and a boiling point of 230-232°C. Therefore, when operating in high-temperature environments, you should pay attention to preventing it from volatilizing or decomposing. It is recommended to store IBMMI in a cool, dry place away from heat and fire sources.

  • Lighting Conditions: The laboratory should maintain sufficient natural or artificial lighting so that the experimenter can clearly see the operation process and avoid misoperation.

2. Personal protective equipment
  • Gloves: When dealing with IBMMI, it is recommended to wear chemical-resistant gloves, such as nitrile gloves or PVC gloves. Gloves should be replaced regularly, especially when operating for a long time or when your hands are sweating.

  • Protective Glasses: IBMMI may cause mild irritation to the eyes, so experimenters should wear protective glasses or face masks to prevent chemicals from splashing into the eyes.

  • Labor Suit: Wearing a suitable laboratory suit can effectively prevent chemicals from touching the skin. The experimental clothes should be selected easilyThe materials for cleaning are replaced in time after each experiment.

  • Respiratory Protection: If long-term exposure to volatile gases from IBMMI is required during the experiment, it is recommended to wear a gas mask or activated carbon filter mask to reduce the risk of inhalation.

3. Chemical Storage and Management
  • Label Identification: All IBMMI reagent bottles should clearly indicate the name, purity, production date, shelf life and other information. Labels should be made of waterproof and corrosion-resistant materials to prevent damage or falling off.

  • Classification Storage: IBMMI should be stored separately from other chemicals, especially to avoid mixing with substances such as oxidants and acids that may react. It is recommended to store it in a dedicated chemical cabinet and lock it.

  • Inventory Management: Laboratories should establish a complete chemical inventory management system and regularly count the quantity of IBMMI to ensure that their use is controllable. IBMMI that has expired or no longer used should be handled in a timely manner in accordance with regulations to avoid backlogs.

4. Waste treatment
  • Waste Liquid Treatment: IBMMI waste liquid should be collected separately to avoid mixing with other waste liquids. The waste liquid should be poured into a special container and labeled as "toxic waste". The waste liquid treatment should comply with the regulations of the local environmental protection department, and if necessary, a professional organization can be entrusted to handle it.

  • Solid Waste Treatment: Solid Waste containing IBMMI (such as discarded reagent bottles, gloves, etc.) should be sealed and packaged, marked as "toxic waste", and disposed of in accordance with relevant regulations. Do not discard or burn at will.

  • Exhaust Gas Treatment: If volatile gases of IBMMI are generated during the experiment, it is recommended to use activated carbon adsorption devices or other exhaust gas treatment equipment to reduce pollution to the atmospheric environment.

5. Emergency treatment
  • Leakage Emergency: If an IBMMI leak occurs, the experiment should be stopped immediately, the ventilation equipment should be turned off, and the gas should be prevented from spreading. Cover the leaking area with oil-absorbing paper or sand and clean it up with special tools. The cleaned waste should be treated as toxic waste.

  • Skin Contact Emergency:If you accidentally get exposed to IBMMI, you should immediately rinse the contact area with a lot of clean water for at least 15 minutes. If necessary, use gentle soap to clean. If symptoms such as redness, swelling, itching, etc. occur, seek medical treatment in time.

  • Eye Contact Emergency: If IBMMI is accidentally splashed into the eyes, rinse the eyes immediately with a lot of clean water for at least 15 minutes. When rinsing, open the upper and lower eyelids to ensure thorough cleaning. If you still feel discomfort after rinsing, you should seek medical treatment immediately.

  • Inhalation Emergency: If volatile gas from IBMMI is inhaled, the patient should be transferred to a place with fresh air and keep the respiratory tract open. If the patient has symptoms such as dyspnea or cough, he/she should immediately call the emergency number and inform the doctor that the patient has inhaled IBMMI.

IV. Conclusion

Isobutyl-2-methylimidazole, as an important organic intermediate, has wide application prospects in laboratories. However, due to its potential toxicity and safety risks, experimental personnel must strictly abide by relevant safety operating specifications when using IBMMI to ensure their own and environmental safety. Through reasonable laboratory management and personal protection measures, we can minimize the risks brought by IBMMI and ensure the smooth progress of the experiment.

I hope this article can provide valuable reference for experimental personnel and help everyone be more skilled in dealing with IBMMI. After all, safety is first and health is the first. Only by ensuring safety can we better explore the mysteries of the chemical world.

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Extended reading:https://www.bdmaee.net/chloriddi-n-butylcinicityczech/

Extended reading:https:// www.bdmaee.net/dabco-pt303-tertiary-amine-catalyst-dabco-pt303-catalyst-dabco-pt303/

Extendedreading:https://www.bdmaee .net/wp-content/uploads/2022/08/-25-S-Lupragen-N202-TEDA-L25B.pdf

Extended reading:https://www.newtopchem.com/archives/44983

Extended reading:https://www.cyclohexylamine.net/cyclohexylamine/

Extended reading:https://www.bdmaee.net/12-propanediol33-dibbutylstannynebistthiobis-dibistyltinbis1-thiolglycerol/

Extended reading:https://www.newtopchem.com/archives/category/products/page/23

Extended reading:https://www.newtopchem.com/archives/1902

Extended reading: https://www.newtopchem.com/archives/561

Extended reading:https://www.bdmaee.net/dabco-bl-17-niax-a- 107-jeffcat-zf-54/

admin
  • by Published on 2025-02-18 22:22:15
  • Reprinted with permission:https://www.morpholine.cc/18495.html
  • Toxicity analysis of 1-isobutyl-2-methylimidazole and its safety operating specifications in the laboratory
Comments  0  Guest  0