Application of N,N-dimethylcyclohexylamine in high-performance foam plastics

admin news2Read

Application of N,N-dimethylcyclohexylamine in high-performance foam plastics

Introduction

N,N-dimethylcyclohexylamine (DMCHA) is an important organic compound and is widely used in chemical industry, medicine, pesticide and other fields. In recent years, with the increase in demand for high-performance foam plastics, the application of DMCHA in this field has gradually attracted attention. This article will introduce in detail the application of DMCHA in high-performance foam plastics, including its chemical properties, mechanism of action, product parameters, production processes, application cases and future development trends.

1. Chemical properties of N,N-dimethylcyclohexylamine

1.1 Molecular Structure

The molecular formula of DMCHA is C8H17N, and the structural formula is:

 CH3
        |
   N-CH3
    /
   /
  /
 /
CH2-CH2-CH2-CH2-CH2-CH2-CH2

1.2 Physical Properties

Properties value
Molecular Weight 127.23 g/mol
Boiling point 159-160 °C
Density 0.85 g/cm³
Flashpoint 38 °C
Solution Easy soluble in organic solvents, slightly soluble in water

1.3 Chemical Properties

DMCHA is a strong basic organic amine with high reactivity. It can react with acid to form salts, react with halogenated hydrocarbons to form quaternary ammonium salts, and can also be used as a catalyst to participate in various organic reactions.

2. The mechanism of action of DMCHA in high-performance foam plastics

2.1 Foaming agent

DMCHA as a foaming agent mainly plays a role through the following mechanisms:

  1. Gas generation: DMCHA decomposes at high temperatures to produce gases such as nitrogen and carbon dioxide to form foam structures.
  2. Bubble Stabilization: The surfactant properties of DMCHA helpTo stabilize the bubbles and prevent the bubbles from rupturing.
  3. Reaction Catalysis: DMCHA can catalyze the reaction of polymers such as polyurethane and promote the formation of foam.

2.2 Catalyst

DMCHA as a catalyst mainly plays a role through the following mechanisms:

  1. Accelerating reaction: DMCHA can accelerate the reaction between isocyanate and polyol and shorten the molding time of foam plastic.
  2. Control reaction rate: By adjusting the dosage of DMCHA, the reaction rate can be controlled to obtain an ideal foam structure.
  3. Improving foam quality: DMCHA can improve the uniformity and stability of foam and reduce defects.

3. Product parameters

3.1 Technical indicators of DMCHA

Indicators value
Purity ≥99%
Moisture ≤0.1%
Color ≤20 APHA
Acne ≤0.1 mg KOH/g
Alkaline value ≥99%

3.2 Technical indicators of high-performance foam plastics

Indicators value
Density 30-50 kg/m³
Compressive Strength ≥150 kPa
Thermal conductivity ≤0.025 W/(m·K)
Water absorption ≤3%
Dimensional stability ≤2%

4. Production process

4.1 Raw material preparation

  1. Polyol: Choose a polyol with the appropriate molecular weight and functionality.
  2. Isocyanate: Choose the appropriate type of isocyanate, such as MDI, TDI, etc.
  3. Foaming Agent: DMCHA is selected as the foaming agent and catalyst.
  4. Adjuvant: Add stabilizers, flame retardants and other additives.

4.2 Mixing and reaction

  1. Mix: Mix polyols, isocyanates, DMCHA and other additives in proportion.
  2. Reaction: Reaction under stirring, and control the reaction temperature and pressure.
  3. Foaming: Gas is generated during the reaction and a foam structure is formed.

4.3 Molding and post-treatment

  1. Modeling: Inject foam plastic into the mold and mold.
  2. Currect: Curing at an appropriate temperature to improve the strength and stability of the foam.
  3. Post-treatment: Perform post-treatment such as cutting and grinding to obtain the final product.

5. Application Cases

5.1 Building insulation materials

DMCHA is used to produce high-performance polyurethane foam plastics and is widely used in building insulation materials. Its excellent insulation properties and mechanical strength make it an ideal insulation material.

5.2 Car interior

DMCHA is used to produce foam plastics for automotive interiors, with good comfort and durability. Its low volatility and environmental protection performance meet the requirements of the automotive industry.

5.3 Packaging Materials

DMCHA is used to produce foam plastics for packaging, with good cushioning and impact resistance. Its light weight and high strength make it an ideal packaging material.

6. Future development trends

6.1 Environmentally friendly foaming agent

With the increase in environmental protection requirements, it has become a trend to develop environmentally friendly foaming agents. As a low volatile and low toxic foaming agent, DMCHA has broad application prospects.

6.2 High-performance foam

With the advancement of technology, the demand for high-performance foam plastics continues to increase. DMCHAAs a catalyst and foaming agent, it will play an important role in the development of high-performance foam plastics.

6.3 Intelligent production

Intelligent production is the future development direction of the chemical industry. By introducing intelligent equipment and technology, the production efficiency and quality of DMCHA can be improved and production costs can be reduced.

Conclusion

The application of N,N-dimethylcyclohexylamine in high-performance foam plastics has broad prospects. Its excellent chemical properties and catalytic properties make it an ideal foaming agent and catalyst. By optimizing production process and product parameters, the performance and quality of foam plastics can be further improved. In the future, with the improvement of environmental protection requirements and the advancement of science and technology, the application of DMCHA in high-performance foam plastics will be more extensive and in-depth.


Table 1: Physical Properties of DMCHA

Properties value
Molecular Weight 127.23 g/mol
Boiling point 159-160 °C
Density 0.85 g/cm³
Flashpoint 38 °C
Solution Easy soluble in organic solvents, slightly soluble in water

Table 2: Technical indicators of high-performance foam plastics

Indicators value
Density 30-50 kg/m³
Compressive Strength ≥150 kPa
Thermal conductivity ≤0.025 W/(m·K)
Water absorption ≤3%
Dimensional stability ≤2%

Table 3: Technical Indicators of DMCHA

Indicators value
Purity ≥99%
Moisture ≤0.1%
Color ≤20 APHA
Acne ≤0.1 mg KOH/g
Alkaline value ≥99%

Through the above content, we have introduced in detail the application of N,N-dimethylcyclohexylamine in high-performance foam plastics. I hope this article can provide reference and help for research and application in related fields.

Extended reading:https://www.bdmaee.net/benzyldimethylamine/

Extended reading:https://www.newtopchem.com/archives/754

Extended reading:<a href="https://www.newtopchem.com/archives/754

Extended reading:https://www.bdmaee.net/cas%EF%BC%9A-2969-81-5/

Extended reading:https://www.newtopchem.com/archives/category/products/page/17

Extended reading:https://www.cyclohexylamine.net/category/product/page/15/

Extended reading:https://www.newtopchem.com/archives/734

Extended reading:https://www.newtopchem.com/archives/44882

Extended reading:https://www.bdmaee.net/dabco-bl-13-niax-catalyst-a-133-niax-a-133/

Extended reading:https://www.newtopchem.com/archives/1840

Extended reading:https://www.cyclohexylamine.net/dabco-amine-catalyst-amine-balance-catalyst/

admin
  • by Published on 2025-03-09 18:51:43
  • Reprinted with permission:https://www.morpholine.cc/19565.html
Comments  0  Guest  0