High-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine

admin news2Read

High-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine

Catalog

  1. Introduction
  2. Overview of polyurethane foaming system
  3. Properties of N,N-dimethylcyclohexylamine
  4. Polyurethane foaming system based on N,N-dimethylcyclohexylamine
  5. Product parameters and performance
  6. Application Fields
  7. Conclusion

1. Introduction

Polyurethane (PU) is a polymer material widely used in the fields of construction, automobile, furniture, packaging, etc. Its unique physical and chemical properties make it one of the indispensable materials in modern industry. Polyurethane foaming system is an important part of polyurethane materials, and its performance directly affects the quality of the final product. This article will introduce in detail the high-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine (DMCHA), including its characteristics, product parameters, performance and application fields.

2. Overview of polyurethane foaming system

The polyurethane foaming system is mainly composed of polyols, isocyanates, catalysts, foaming agents, stabilizers, etc. Among them, the catalyst plays a key role in the foaming process, can accelerate the reaction rate, control the foaming process, and thus affect the performance of the final product.

2.1 Polyol

Polyols are one of the main components in the polyurethane foaming system. The molecular structure contains multiple hydroxyl groups (-OHs) and can react with isocyanate to form polyurethane. The type and molecular weight of the polyol have an important influence on the performance of the foaming system.

2.2 Isocyanate

Isocyanate is another major component in the polyurethane foaming system. Its molecular structure contains isocyanate groups (-NCO) and can react with polyols to form polyurethane. Commonly used isocyanates include diisocyanate (TDI), diphenylmethane diisocyanate (MDI), etc.

2.3 Catalyst

Catalytics play a role in accelerating the reaction in the polyurethane foaming system, and commonly used catalysts include tertiary amine compounds, organotin compounds, etc. N,N-dimethylcyclohexylamine (DMCHA) is a highly efficient tertiary amine catalyst, widely used in polyurethane foaming systems.

2.4 Foaming agent

Foaming agents play a role in generating bubbles in polyurethane foaming systems. Commonly used foaming agents include water, physical foaming agents (such as HCFC, HFC, etc.).

2.5 Stabilizer

Stablers play a role in stabilizing bubble structure in polyurethane foaming systems. Commonly used stabilizers include silicone oil, surfactants, etc.

3. Characteristics of N,N-dimethylcyclohexylamine

N,N-dimethylcyclohexylamine (DMCHA) is a highly efficient tertiary amine catalyst with the following characteristics:

3.1 High-efficiency Catalysis

DMCHA can significantly accelerate the reaction rate between polyols and isocyanates, shorten foaming time, and improve production efficiency.

3.2 Good solubility

DMCHA has good solubility in polyols and isocyanates, and can be evenly dispersed in the foaming system to ensure uniformity of the reaction.

3.3 Low odor

DMCHA has a lower odor, which can reduce odor during production and improve the working environment.

3.4 Environmental protection

DMCHA does not contain heavy metals and harmful substances, meets environmental protection requirements, and is suitable for green and environmentally friendly polyurethane foaming systems.

4. Polyurethane foaming system based on N,N-dimethylcyclohexylamine

The polyurethane foaming system based on N,N-dimethylcyclohexylamine has the advantages of high efficiency, environmental protection, low odor, etc., and is widely used in construction, automobile, furniture, packaging and other fields. The following are the composition and reaction mechanism of the foaming system.

4.1 Composition

Ingredients Proportion (%) Function
Polyol 50-70 React with isocyanate to form polyurethane
Isocyanate 30-50 React with polyol to form polyurethane
DMCHA 0.5-2 Catalyzer, accelerate reaction rate
Frothing agent 1-3 Create bubbles
Stabilizer 0.5-1.5 Stable bubble structure

4.2 Reaction mechanism

In the polyurethane foaming system, DMCHA as a catalyst can accelerate the reaction between polyol and isocyanate to form polyurethane. The reaction process is as follows:

  1. Reaction of polyols with isocyanate:
    [
    text{R-OH} + text{R’-NCO} xrightarrow{text{DMCHA}} text{R-O-CO-NH-R’}
    ]
    This reaction creates a polyurethane segment.

  2. Frost agent decomposition:
    The foaming agent (such as water) reacts with isocyanate to form carbon dioxide gas, producing bubbles:
    [
    text{H}_2text{O} + text{R’-NCO} xrightarrow{text{DMCHA}} text{R’-NH}_2 + text{CO}_2
    ]

  3. Bubbles are stable:
    Stabilizers (such as silicone oil) can stabilize the bubble structure, prevent bubbles from bursting or merging, and ensure uniformity of the foam.

5. Product parameters and performance

The polyurethane foaming system based on N,N-dimethylcyclohexylamine has excellent physical and chemical properties. The following are its main product parameters and properties.

5.1 Product parameters

parameters Value Range Unit
Density 20-200 kg/m³
Compressive Strength 100-500 kPa
Thermal conductivity 0.02-0.04 W/(m·K)
Closed porosity 85-95 %
Dimensional stability ±1 %
Temperature range -40 to +120

5.2 Performance Features

  1. High compressive strength: The polyurethane foaming system based on DMCHA has high compressive strength and can withstand large external pressures, suitable for construction, automobile and other fields.

  2. Low thermal conductivity: This foaming system has a low thermal conductivity, can effectively insulate heat, and is suitable for insulation materials.

  3. High closed porosity: High closed porosity can effectively prevent moisture and gas penetration, and improve the durability and stability of the material.

  4. Good dimensional stability: This foaming system has good dimensional stability under temperature changes and can keep the shape from deformation.

  5. Wide use temperature range: This foaming system has good performance in the temperature range of -40℃ to +120℃ and is suitable for various environmental conditions.

6. Application areas

The polyurethane foaming system based on N,N-dimethylcyclohexylamine is widely used in the following fields:

6.1 Construction Field

  1. Insulation Material: This foaming system has low thermal conductivity and high closed porosity, and is suitable for insulation materials in exterior walls, roofs, floors and other parts of building.

  2. Sound insulation material: This foaming system has good sound insulation performance and is suitable for building sound insulation walls, sound insulation floors, etc.

6.2 Automotive field

  1. Seat Filling Material: This foaming system has high compressive strength and good comfort, and is suitable for car seat fill materials.

  2. Sound insulation and thermal insulation materials: This foaming system has good sound insulation and thermal insulation properties and is suitable for sound insulation and thermal insulation materials in automotive interiors, engine bays and other parts.

6.3 Furniture Field

  1. Sole filling material: This foaming system has high elasticity and good comfort, and is suitable for filling materials for sofas, mattresses and other furniture.

  2. Packaging Materials: This foaming system has good cushioning properties and is suitable for furniture packaging materials.

6.4 Packaging Field

  1. Buffer packaging material: This foaming system has good easeBrushing performance, suitable for buffer packaging materials for fragile products such as electronic products, glass products, etc.

  2. Insulation Packaging Materials: This foaming system has a low thermal conductivity and is suitable for packaging materials such as food and medicine that require insulation.

7. Conclusion

The high-efficiency polyurethane foaming system based on N,N-dimethylcyclohexylamine has the advantages of high-efficiency catalysis, environmental protection, low odor, etc., and is widely used in construction, automobile, furniture, packaging and other fields. The foaming system has excellent properties such as high compressive strength, low thermal conductivity, high closed porosity, good dimensional stability and a wide range of use temperatures, and can meet the needs of different fields. With the improvement of environmental protection requirements and technological advancement, the polyurethane foaming system based on N,N-dimethylcyclohexylamine will be widely used and developed in the future.

Extended reading:https://www.newtopchem.com/archives/1129

Extended reading:https://www.bdmaee.net/dabco-1028-catalyst-cas100515-56-6-evonik-germany/

Extended reading:https://www.newtopchem.com/archives/103

Extended reading:https://www.newtopchem.com/archives/category/products/page/133

Extended reading:https://www.morpholine.org/cas-616-47-7/

Extended reading:https://www.bdmaee.net/trimethylhydroxyethyl-bisaminoethyl-ether/

Extended reading:https://www.bdmaee.net/nt-cat-pmdeta-catalyst-cas3855-32-1-newtopchem/

Extended reading:https://www.bdmaee.net/benzyldimethylamine/

Extended reading:<a href="https://www.bdmaee.net/benzyldimethylamine/

Extended reading:https://www.newtopchem.com/archives/44421

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/FASCAT2001-catalyst-CAS301-10-0-Stannous-octoate.pdf

admin
  • by Published on 2025-03-09 18:59:04
  • Reprinted with permission:https://www.morpholine.cc/19569.html
Comments  0  Guest  0