N,N,N’,N”,N”-pentamethyldipropylene triamine: a revolutionary application in high-performance polyurethane elastomers

admin news2Read

N,N,N’,N”,N”-Penmethyldipropylene triamine: a revolutionary application in high-performance polyurethane elastomers

Introduction

Polyurethane Elastomers (PU Elastomers) are a polymer material with excellent mechanical properties, wear resistance, chemical resistance and elasticity. They are widely used in automobiles, construction, electronics, medical and other fields. In recent years, with the rapid development of materials science, the demand for high-performance polyurethane elastomers has increased. N,N,N’,N”,N”-pentamethyldipropylene triamine (hereinafter referred to as pentamethyldipropylene triamine) has shown revolutionary application potential in the preparation of high-performance polyurethane elastomers. This article will introduce in detail the chemical characteristics, mechanism of action, product parameters and its application in high-performance polyurethane elastomers.

1. Chemical properties of pentamethyldipropylene triamine

1.1 Chemical structure

The chemical formula of pentamethyldipropylene triamine is C11H23N3 and the molecular weight is 197.32 g/mol. Its molecular structure contains three nitrogen atoms and two propylene groups, which have high reactivity and cross-linking capabilities. The following is a schematic diagram of its chemical structure:

 CH3
        |
CH2=CH-CH2-N-CH2-CH2-N-CH2-CH2-CH3
        | | |
       CH3 CH3 CH3

1.2 Physical Properties

Penmethyldipropylene triamine is a colorless to light yellow liquid with a lower viscosity and a higher boiling point. Its main physical properties are shown in the following table:

Properties value
Appearance Colorless to light yellow liquid
Density (20°C) 0.89 g/cm³
Boiling point (1 atm) 250°C
Flashpoint 110°C
Viscosity (25°C) 10 mPa·s
Solution Easy soluble in organic solvents

1.3 Chemical Properties

Penmethyldipropylene triamine has high reactivity and can react rapidly with isocyanate to form a stable crosslinking structure. In addition, nitrogen atoms in its molecules can be used as catalysts to accelerate the polymerization of polyurethane.

Diamond and pentamethyldipropylene triamine

2.1 Crosslinking effect

Penmethyldipropylene triamine is mainly used as a crosslinking agent in the preparation of polyurethane elastomers. The acrylic groups in its molecules can react with isocyanate to form a three-dimensional network structure, thereby improving the mechanical properties and heat resistance of the material.

2.2 Catalysis

The nitrogen atoms in pentamethyldipropylene triamine have lone pairs of electrons and can form coordination bonds with carbon atoms in isocyanate, thereby accelerating the reaction of isocyanate with polyols. This catalytic action not only improves the reaction rate, but also improves the uniformity and stability of the material.

2.3 Enhancement

The introduction of pentamethyldipropylene triamine can significantly improve the tensile strength, tear strength and wear resistance of polyurethane elastomers. The rigid part of its molecular structure can effectively enhance the mechanical properties of the material.

Product parameters of trimethoxydipropylene triamine

3.1 Product Specifications

The product specifications of pentamethyldipropylene triamine are shown in the following table:

parameters value
Purity ≥99%
Moisture content ≤0.1%
Acne ≤0.5 mg KOH/g
Amine Value 500-550 mg KOH/g
Storage temperature 0-30°C
Shelf life 12 months

3.2 How to use

The use of pentamethyldipropylene triamine is as follows:

  1. Combination: Usually mixed with polyols and isocyanate in a certain proportion, and the specific proportion is adjusted according to the material performance requirements.
  2. Mix: Use pentamethdipropyleneThe triamine and polyol were mixed thoroughly, and then the isocyanate was added and stirred evenly.
  3. Curring: Curing at room temperature or heating conditions, the curing time is adjusted according to the material thickness and ambient temperature.

3.3 Safety precautions

Penmethyldipropylene triamine has certain irritation. The following things should be paid attention to when using:

  • Avoid direct contact with the skin and eyes, and wear protective gloves and goggles during operation.
  • Operate in a well-ventilated environment to avoid inhaling steam.
  • Storage in a cool, dry place, away from fire and heat sources.

Application of tetramethyldipropylene triamine in high-performance polyurethane elastomers

4.1 Automobile Industry

In the automotive industry, high-performance polyurethane elastomers are widely used in seals, shock absorbers, tires and other components. The introduction of pentamethyldipropylene triamine can significantly improve the wear resistance, heat resistance and mechanical strength of these components, thereby extending their service life.

4.1.1 Seals

Pentamethyldipropylene triamine, as a crosslinking agent, can improve the elasticity and oil resistance of the seal, so that it maintains good sealing performance under high temperature and high pressure environments.

4.1.2 Shock Absorber

In the preparation of shock absorbers, pentamethyldipropylene triamine can enhance the damping performance of the material, improve the shock absorption effect, and extend the service life of the shock absorbers.

4.2 Construction Industry

In the construction industry, high-performance polyurethane elastomers are mainly used in waterproof materials, sealants and thermal insulation materials. The introduction of pentamethyldipropylene triamine can improve the weather resistance, water resistance and mechanical strength of these materials.

4.2.1 Waterproofing material

Penmethyldipropylene triamine can improve the elasticity and water resistance of waterproof materials, so that they can maintain good waterproof performance when exposed to rainwater and ultraviolet rays for a long time.

4.2.2 Sealant

In the preparation of sealant, pentamethyldipropylene triamine can improve the adhesive strength and weather resistance of the material, so that it can maintain good sealing performance under high and low temperature environments.

4.3 Electronics Industry

In the electronics industry, high-performance polyurethane elastomers are mainly used in insulating materials, packaging materials and conductive adhesives. The introduction of pentamethyldipropylene triamine can improve the insulation properties, heat resistance and mechanical strength of these materials.

4.3.1 Insulation material

Penmethyldipropylene triamine can improve the heat resistance and mechanical strength of insulating materials, so that they still maintain good insulation performance under high temperature and high voltage environments.

4.3.2 Packaging Materials

In the preparation of packaging materials, pentamethyldipropylene triamine can improve the heat and chemical resistance of the material, so that it can maintain good packaging performance under long-term exposure to high temperatures and chemical substances.

4.4 Medical Industry

In the medical industry, high-performance polyurethane elastomers are mainly used in artificial organs, catheters and medical glues. The introduction of pentamethyldipropylene triamine can improve the biocompatibility, chemical resistance and mechanical strength of these materials.

4.4.1 Artificial organs

Penmethyldipropylene triamine can improve the biocompatibility and mechanical strength of artificial organs, so that they still maintain good performance and safety during long-term use.

4.4.2 Catheter

In the preparation of catheters, pentamethyldipropylene triamine can improve the chemical resistance and mechanical strength of the material, so that it can maintain good performance under long-term exposure to body fluids and chemical substances.

The future development of pentamethyldipropylene triamine

5.1 Development of new crosslinking agents

With the continuous development of materials science, the development of new crosslinking agents will become the focus of future research. As a highly efficient crosslinking agent, pentamethyldipropylene triamine will further improve its application performance in polyurethane elastomers.

5.2 Application of green and environmentally friendly materials

With the increase in environmental awareness, the development and application of green and environmentally friendly materials will become the trend of future development. As a low-toxic and efficient crosslinking agent, pentamethyldipropylene triamine will play an important role in the preparation of green and environmentally friendly polyurethane elastomers.

5.3 Development of multifunctional materials

In the future, the development of multifunctional materials will become an important direction in materials science. The introduction of pentamethyldipropylene triamine can not only improve the mechanical properties of polyurethane elastomers, but also impart special functions such as electrical conductivity, thermal conductivity, and antibacteriality to the materials, thereby expanding their application areas.

VI. Conclusion

N,N,N’,N”,N”-pentamethyldipropylene triamine, as a novel crosslinking agent and catalyst, has shown revolutionary application potential in the preparation of high-performance polyurethane elastomers. Its excellent chemical characteristics, mechanism of action and product parameters make it widely used in automobiles, construction, electronics, medical and other fields. In the future, with the continuous development of materials science, pentamethyldipropylene triamine will play a more important role in the development of new crosslinking agents, the application of green and environmentally friendly materials and the development of multifunctional materials.

Through the introduction of this article, I believe that readers have a deeper understanding of the application of pentamethyldipropylene triamine in high-performance polyurethane elastomers. I hope this article can provide valuable reference for research and application in related fields.

Extendedreading:https://www.bdmaee.net/pc-cat-pmdeta-catalyst-pentamethyldienetriamine/

Extended reading:https://www.newtopchem.com/archives/40057

Extended reading:<a href="https://www.newtopchem.com/archives/40057

Extended reading:https://www.newtopchem.com/archives/40458

Extended reading:https://www.cyclohexylamine.net/pc5-catalyst-polyurethane-catalyst-pc5-2/

Extended reading:https://www.bdmaee.net/author/12dma/

Extended reading:https://www.morpholine.org/category/morpholine/

Extended reading:https://www.bdmaee.net/lupragen-dmi-polyurethane-gel-catalyst/

Extended reading:https://www.newtopchem.com/archives/772

Extended reading:https://www.newtopchem.com/archives/44579

Extended reading:<a href="https://www.newtopchem.com/archives/44579

Extended reading:https://www.bdmaee.net/jeffcat-dmcha-catalyst-cas107-16-9-huntsman/

admin
  • by Published on 2025-03-12 02:18:36
  • Reprinted with permission:https://www.morpholine.cc/19843.html
Comments  0  Guest  0